Multi-User MIMO-OFDM for Indoor Visible Light Communication Systems

Qi Wang¹, Zhaocheng Wang¹, Chen Qian¹, Linglong Dai¹, and Jinguo Quan² ¹Department of Electronic Engineering, Tsinghua University, Beijing, China ²Shenzhen Graduate School, Tsinghua University, Shenzhen, China

Contents

Background

System Model

MU-MIMO-OFDM for VLC

Simulation Results

Conclusions

Visible light communication

- Advantages
 - No electromagnetic interference
 - High security
 - Low cost

- Multiple LED units are usually installed in a single room
 - Provide sufficient illumination
 - Bandwidth of off-the-shelf LED is limited
 - MIMO can be naturally used to boost the data rate

Multiuser MIMO VLC

Precoding

- Zero forcing
- Dirty paper coding
- Minimum mean-squared error (MMSE)
- Block diagonalization
- OFDM \rightarrow High spectral efficiency
- MIMO-OFDM

System Model

- ► *N_t* LED units
- N_r users with single PD

System Model

- $\textbf{DC channel gain} \quad h_{p,q}^{DC} = \begin{cases} \frac{\rho_p A_p}{d_{p,q}^2} R(\phi_q) \cos(\varphi_{p,q}), \varphi_{p,q} \leq \Psi_{c,p} \\ 0, \varphi_{p,q} > \Psi_{c,p} \end{cases}$
 - ρ_p : responsivity coefficient of PD
 - $d_{p,q}$: distance between the qth LED unit and the pth user
 - $\varphi_{p,q}$: incidence angle of the light
 - $\Psi_{c,p}$: receiver FOV
- Noise

$$\sigma_p^2 = 2eP_pB + 2e\rho_p\chi_{amb}A_p\left(1 - \cos\left(\Psi_{c,p}\right)\right)B + i_{amp}^2$$

• P_p : the average received optical power at the pth user

MU-MIMO-OFDM for VLC

- In existing MU-MIMO VLC systems, singlecarrier modulations are utilized
- Time domain precoding
- Distances of the multiple transmitter-receiver links are different → different delays

$$h_{p,q}(t) = h_{p,q}^{DC} \delta\left(t - \frac{d_{p,q}}{c}\right)$$

Frequency-domain channel response

$$H_{p,q,k} = h_{p,q}^{DC} \exp\left(-\frac{j2\pi kBd_{p,q}}{Nc}\right)$$

Complex-valued

MU-MIMO-OFDM for VLC

- Precoding is performed on each subcarrier to eliminate multiuser interference
 - Data: $D_{p,k}$ $D_{p,k} = D_{p,N-k}^*$
 - Precoding weights: $W_{p,q,k}$
 - Frequency-domain singal: $X_{q,k} = \sum_{j=1}^{N_r} W_{p,q,k} D_{p,k}, k = 0, 1, \dots, N-1$
- After IFFT

$$x_{q,n} = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X_{q,n} \exp\left(j\frac{2\pi}{N}nk\right), n = 0, 1, \dots, N-1$$

CP is added to eliminate ISI

Precoding Design

At the receiver of the pth user

$$R_{p,k} = \sum_{q=1}^{N_t} H_{p,q,k} X_{q,k} + Z_{p,k} = \mathbf{H}_{p,k}^T \mathbf{W}_{p,k} D_{p,k} + \sum_{l \neq p}^{N_t} \mathbf{H}_{l,k}^T \mathbf{W}_{l,k} D_{l,k} + Z_{p,k}$$

Rewrite in the matrix form

$$R_{p,k} = \sum_{q=1}^{N_t} H_{p,q,k} X_{q,k} + Z_{p,k} = \mathbf{H}_{p,k}^T \mathbf{W}_{p,k} D_{p,k} + \sum_{l \neq p}^{N_t} \mathbf{H}_{l,k}^T \mathbf{W}_{l,k} D_{l,k} + Z_{p,k}$$

Two simple precoding methods
Zero-forcing H_kW_k = diag(λ_k)
W_k = H[†]_kdiag(λ_k) = H^H_k(H_kH^H_k)⁻¹ diag(λ_k)
MMSE

$$\mathbf{V}_{k} = \mathbf{H}_{k}^{H} \left(\mathbf{H}_{k} \mathbf{H}_{k}^{H} + \operatorname{diag} \left(\mathbf{\sigma}_{\mathbf{Z}_{k}}^{2} \right) \right)^{-1} \operatorname{diag} \left(\boldsymbol{\lambda}_{k} \right)$$

DCO-OFDM-based MU-MIMO

- Intensity modulation with direct detection
- Non-negative real signals are transmitted
- DC bias is added \rightarrow DCO-OFDM

$$\overline{P}_{DC,q} = \eta \sqrt{E\left\{x_{q,n}^2\right\}}$$

- Low DC bias \rightarrow clipping distortion
- High DC bias \rightarrow inefficient in terms of power
- Define a minimum DC bias ratio n₀ to avoid clipping distortion
- Average optical power: P

DCO-OFDM-based MU-MIMO

- Minimum DC bias scheme
 - Each transmitter use different DC biases $\overline{P}_{DC,q} = \eta_0 \sqrt{E\{x_{q,n}^2\}}$

• **Optical power:**
$$P_{opt,q} = E\{x_{q,n} + \overline{P}_{DC,q}\} = E\{x_{q,n}\} + \overline{P}_{DC,q} = \overline{P}_{DC,q}$$

 $y_{q,n} = \alpha(x_{q,n} + \overline{P}_{DC,q})$

• Scaling factor:
$$\alpha = N_t P / \eta_0 \sum_{q=1}^{N_t} \sqrt{E\{x_{q,n}^2\}}$$

• DC bias:
$$P_{DC,q} = \alpha \overline{P}_{DC,q} = \sqrt{E \{x_{q,n}^2\}} N_t P / \sum_{q=1}^{N_t} \sqrt{E \{x_{q,n}^2\}}$$

- Unified DC blas scheme
 - Each transmitter use the same DC bias

$$\alpha = \frac{P}{\eta_0 \sqrt{\max_{1 \le q \le N_t} E\left\{x_{q,n}^2\right\}}} \qquad P_{DC,q} = P$$

ACO-OFDM-based MU-MIMO

Only odd subcarriers are modulated

 $x_{q,n} = -x_{q,n+N/2}, n = 0, 1, \cdots, N-1$

- Asymmetrically clipping at zero
- No DC bias: better performance?
- Optical power: $P_{opt,q} = E\{x_{q,n}^{(c)}\} = \sqrt{E\{x_{q,n}^2\}/2\pi}$ Scaling factor:

$$\alpha = \frac{N_t P}{\sum_{q=1}^{N_t} P_{opt,q}} = \frac{N_t P}{\sum_{q=1}^{N_t} \sqrt{E\{x_{q,n}^2\}/2\pi}}$$

System Block Diagam

Simulation Results

SIMULATION PARAMETERS FOR VLC SYSTEM CONFIGURATION

Room size (length \times width \times height)	$5 \text{ m} \times 5 \text{ m} \times 3 \text{ m}$
LED 1 coordinate	[1.25 1.25 3]
LED 2 coordinate	[1.25 3.75 3]
LED 3 coordinate	[3.75 1.25 3]
LED 4 coordinate	[3.75 3.75 3]
LED emission angle ϕ_q	60 deg
PD area $A_{PD,p}$	1 cm ²
PD responsivity coefficient ρ_p	0.4 A/W
PD concentrator refractive index γ	1.5
Lambertian emission mode number m	1
Receiver FOV angle $\Psi_{c,p}$	62 deg
Pre-amplifier noise density i_{amp}	5 pA/Hz ^{-1/2}
Ambient light photocurrent χ_{amp}	10.93 A/m ² /Sr
System bandwidth B	1 GHz
OFDM subcarrier number N	64
Cyclic prefix length N _{CP}	3

Case 1

- User 1: [2.5 2.5 0.85]
- User 2: [3.2 3.9 0.85]

Case 2:

- User 1: [2.05 1.6 0.85]
- User 2: [2.05 1.4 0.85]

Simulation Results

Spectral efficiency of each subcarrier with the average emitted optical power P=0 dB

Simulation Results

DCO-OFDM-based MU-MIMO VLC

ACO-OFDM-based MU-MIMO VLC

Conclusions

- MU-MIMO-OFDM is investigated for indoor VLC systems
- The distance differences of the multiple transmitter-receiver links are considered
- DCO-OFDM with minimum and unified DC bias, and ACO-OFDM are compared in the proposed system

Thanks for your suggestions!

