# Abstract

Most matching pursuit algorithms are based on the mean square error(MSE) to minimize the recovery error, which is suboptimal when there are outliers. We present a new robust OMP algorithm based on kernel non-second order statistics (KNS-OMP), which not only takes advantages of the outlier resistance ability of correntropy but also further extends the second order statistics based correntropy to a non-second order similarity measurement to improve its robustness. The resulted framework is more accurate than the second order ones in reducing the effect of outliers.

#### Motivation



Figure: Weight images from CMP and the proposed algorithm. (a) Original image, (b) occluded image, (c) Weight images of CMP, (d) weight images of the proposed image.

# Matching Pursuit Based on Kernel Non-second Order Minimization

Miaohua Zhang<sup>1</sup>, Yongsheng Gao<sup>1</sup>, Changming Sun<sup>2</sup>, and Michael Blumenstein<sup>3</sup> School of Engineering, Griffith University, QLD, Australia. <sup>2</sup> CSIRO Data61, Marsfield, NSW, Australia.

 $^3$  Faculty of Engineering & Information Technology, University of Technology Sydney, NSW, Australia.

# **Proposed Framework**

The kernel non-second order loss function (KNS-loss) is defined as

$$J_{\text{KNS-loss}}(A, B) = 2^{-p/2} E[\| \varphi(A) - \varphi(B) \|_{\mathcal{H}}^{p}] = E[(1 - g_{\sigma}(A - B))^{p/2}], \quad (1)$$

where p (> 0) can be flexibly adjusted to improve the performance of sparse recovery. Then we obtain a new approximation  $\mathbf{x}_k$  by solving the kernel non-second order loss function

$$J_{\text{KNS-loss}}(\mathbf{x}) = \frac{1}{m} \sum_{\substack{j=1\\j=1}}^{m} (1 - g_{\sigma}(\mathbf{y}_i - \sum_{i=1}^{n} \mathbf{a}_{ij}\mathbf{x}_i))^{\frac{p}{2}}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \rho(||\mathbf{e}_i||_2),$$
(2)

According to the M-estimator and the definition of reweighted least squares, the objective is given by

## **Experimental Results**

Table: Average recovery error of different MP algorithms with various type of noise.Best results are marked in bold.

|          | $\chi^2(1)$ | Exp.  | Stud. | Miss.  | Gau. | White |
|----------|-------------|-------|-------|--------|------|-------|
| OMP      | 11.91       | 12.60 | 14.80 | 0.45   | 5.04 | 4.51  |
| GOMP     | 12.55       | 11.90 | 14.68 | 0.58   | 5.09 | 4.38  |
| CoSaMP   | 15.88       | 12.78 | 17.56 | 0.61   | 4.92 | 6.23  |
| CMP      | 6.12        | 9.00  | 11.25 | 0.0133 | 5.22 | 6.21  |
| Proposed | 5.89        | 7.97  | 10.85 | 0.0015 | 4.73 | 3.96  |



Figure: Average recovery error of the KNS-OMP with different p values with different types of noise.

## **Proposed Framework**

$$\min \sum_{i=1}^{N} \gamma_i \mathbf{e}_i^2, \tag{3}$$

where  $\mathbf{e}_i = \mathbf{y}_i - \sum_{i=1}^n \mathbf{a}_{ij} \mathbf{x}_i$  and function  $\gamma(\mathbf{e}_i)$  is defined by  $\gamma_i = \rho'(\mathbf{e}_i)/\mathbf{e}_i$ . Then we have

$$\gamma_i^{k+1} = \frac{p}{2\sigma^2} \left[ 1 - \exp\left(-\frac{\|\mathbf{e}_i\|_2^2}{2\sigma^2}\right) \right]^{\frac{p}{2}-1} \exp\left(-\frac{\|\mathbf{e}_i\|_2^2}{2\sigma^2}\right). \quad (4)$$

After obtaining the weights from (4), the sparse vector can be updated by

$$\mathbf{x}^{k+1} = \operatorname*{argmin}_{\mathbf{x} \in R^n, \operatorname{supp}(\mathbf{x}) \subset S_k} \left\| \operatorname{diag}(\gamma^{k+1}) (\mathbf{y} - \mathbf{A}\mathbf{x}) \right\|_2^2 \qquad (5)$$

After obtaining the sparse vector, we update the residual by  $\mathbf{r}^{k+1} = \operatorname{diag}(\gamma^{k+1})(\mathbf{y} - \mathbf{A}\mathbf{x}^{k+1}).$ (6)

The kernel size  $\sigma$  can be updated by

$$\sigma^{k+1} = \left\| \frac{1}{2m} \left\| \mathbf{y} - \mathbf{A} \mathbf{x}^{k+1} \right\|_2^2, \tag{7}$$

#### **Experimental Results**

Table: Average reconstruction error of different MP algorithms. RE1: random noise occlusion, RE2: real noise occlusion.

| Methods             | RE1        | RE2     |
|---------------------|------------|---------|
| OMP                 | 3.0023     | 3.3787  |
| GOMP                | 3.3389     | 3.3872  |
| CoSaMP              | 10.7602    | 20.7146 |
| CMP                 | 2.2025     | 2.5580  |
| KNS-OMP $(p = 1.5)$ | 1.2078e-05 | 0.0227  |
| KNS-OMP $(p = 1.7)$ | 0.0043     | 0.0158  |

• Develop a non-second order statistics-based loss function to enhance the robustness of performance of the orthogonal pursuit algorithm.



Figure: Sparse vector of different MP algorithms.

# Conclusion

• Result in greater noise resistance and occlusion detection ability and improved performances in applications of signal recovery and image reconstruction.

