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Abstract

Feature LMS algorithms, by applying a feature ma-
trix to the coe�cients vector, can detect and exploit
sparsity in linear combinations of �lter coe�cients
(hidden sparsity). In many cases the unknown plant
to be identi�ed may contain not only hidden but
also plain sparsity · · · we here use the l0-norm, as a
sparsity-promoting techniques, to the F-LMS algo-
rithm. Experimental results show that the proposed
algorithm outperforms (faster convergence rate) the
F-LMS algorithm when dealing with hidden spar-
sity, particularly for highly sparse systems.

Introduction

• LMS: the most popular algorithm since the
year I was born, but it may be improved for
sparse systems

• Exploiting signals and systems sparsity can
improve steady-state MSE, convergence rate,
etc.

• Recently introduced (ICASSP 2018), the F-
LMS exploits hidden sparsity

• The F-LMS algorithm is not able to exploit
plain sparsity, sometimes observed along with
hidden sparsity

l0-norm F-LMS algorithms

• The objective function (ζl0-F-LMS):

1

2
|e(k)|2︸ ︷︷ ︸

LMS term

+α‖F(k)w(k)‖1︸ ︷︷ ︸
feature-inducing

+ λ‖w(k)‖0︸ ︷︷ ︸
plain sparsity

• Feature matrix: F(k), utilized for exposing
the hidden sparsity, is such that F(k)w(k) be-
comes a sparse vector. Practical selections of
F(k) must be based on some a priori informa-
tion about the unknown system.

• The plain sparsity promoting term is
non-di�erentiable and is replaced by

Gβ(w) ,
∑N
i=0

(
1− 1

1+β|wi|

)
,

β trading o� smoothness and quality of ap-
proximation.

l0-norm F-LMS algorithms

• The gradient ∇Gβ(w) = gβ(w)
becomes [gβ(w0) · · · gβ(wN )]T ,

with gβ(wi) =
βsgn(wi)

(1+β|wi|)2 (curve with β = 5).
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• The recursive expression of the
l0-F-LMS algorithm is then obtained:
w(k + 1) = w(k) + µe(k)x(k)− µ(αp(k)

+λgβ(w(k)),
where 0 < α, λ � 1, µ is the step-size and
p(k) ∈ RN+1 is the gradient of ‖F(k)w(k)‖1.

Sparse lowpass systems

• The l0-F-LMS Algorithm for sparse lowpass
systems

• Unknown system has lowpass narrowband
spectrum⇒ its impulse response is smooth⇒
the di�erence between adjacent coe�cients is
small

• Let F ∈ RN×(N+1) =

 1 −1 0
. . .

. . .

0 1 −1


⇒ Fw(k) is a sparse vector

• Therefore, p(k) = [p0(k) · · · pN (k)]T is given
by

pi(k) =


sgn(w0(k)− w1(k)) if i = 0,
−sgn(wi−1(k)− wi(k))
+sgn(wi(k)− wi+1(k))

if i = 1, · · · , N − 1,
−sgn(wN−1(k)− wN (k)) if i = N.

Sparse highpass systems

• The l0-F-LMS Algorithm for sparse highpass
systems

• Unknown system has highpass narrowband
spectrum ⇒ adjacent coe�cients have simi-
lar absolute values, but with opposite signs
⇒ the sum of adjacent coe�cients is small

• Let F ∈ RN×(N+1) =

 1 1 0
. . .

. . .

0 1 1


⇒ Fw(k) is a sparse vector

• Therefore, p(k) = [p0(k) · · · pN (k)]T is given
by

pi(k) =


sgn(w0(k) + w1(k)) if i = 0,
sgn(wi−1(k) + wi(k))
+sgn(wi(k) + wi+1(k))

if i = 1, · · · , N − 1,
sgn(wN−1(k) + wN (k)) if i = N.

Simulations

• Algorithms tested: LMS, proportionate LMS
(PLMS), F-LMS, and l0-F-LMS

• Input signals (SNR=20dB): x(k) ∼ N (0, 1)
and x(k) correlated signal (λmax/λmin = 20)

• Filter order: N = 99 (100 coe�cients) initial-
ized as w(0) = [0, · · · , 0]T

• Constants: β = 20, α = 0.05, and λ = 0.005

• Unknown block sparse lowpass system: wo,l =
[0.4, 0.4, · · · , 0.4,01×70]

T

• Unknown block sparse highpass system:
wo,h = [0.4,−0.4, 0.4 · · · ,−0.4,01×70]

T

• w2
o,l (refers to an upsampled by 2 version) and

w4
o,l (refers to an upsampled by 4 version)
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Learning curves of algorithms under test, consid-
ering: (1, left) wo,l and pl(k) (uncorrelated input
when not mentioned explicitly); (2) wo,h and ph(k).
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Learning curves: (1, left) wo,l, pl(k), and corre-
lated input signal; (4) wo,h, ph(k), and correlated
input signal.
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Learning curves: (1, left) w2
o,l and p2
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Conclusions

• We generalize the F-LMS algorithm and pro-
pose the l0-F-LMS algorithm so that it can
exploit hidden and plain sparsity in unknown
systems

• Hidden sparsity is disclosed by applying the
feature matrix while using the l1-norm pro-
motes a sparse vector

• Whenever we know the feature of system, this
strategy can be utilized in the presence of hid-
den and plain sparsity

• Simulation results corroborate the superiority
of the l0-F-LMS algorithm over the F-LMS,
the PLMS, and the LMS algorithms


