l_{0}-norm Feature LMS algorithms

\{hamed.yazdanpanah,markus.lima,diniz\}@smt.ufrj.br and apolin@ime.eb.br
UFRJ

Abstract

Feature LMS algorithms, by applying a feature matrix to the coefficients vector, can detect and exploit sparsity in linear combinations of filter coefficients (hidden sparsity). In many cases the unknown plant to be identified may contain not only hidden but also plain sparsity \cdots we here use the l_{0}-norm, as a sparsity-promoting techniques, to the F-LMS algorithm. Experimental results show that the proposed algorithm outperforms (faster convergence rate) the F-LMS algorithm when dealing with hidden sparsity, particularly for highly sparse systems

Introduction

- LMS: the most popular algorithm since the year I was born, but it may be improved for sparse systems
- Exploiting signals and systems sparsity can improve steady-state MSE, convergence rate, etc.
- Recently introduced (ICASSP 2018), the FLMS exploits hidden sparsity
- The F-LMS algorithm is not able to exploit plain sparsity, sometimes observed along with hidden sparsity

l_{0}-norm F-LMS algorithms

- The objective function $\left(\zeta_{l_{0}-F-L M S}\right)$:
$\underbrace{\frac{1}{2}|e(k)|^{2}}+\underbrace{\alpha\|\mathbf{F}(k) \mathbf{w}(k)\|_{1}}_{\text {feature-inducing }}+\underbrace{\lambda\|\mathbf{w}(k)\|_{0}}_{\text {plain sparsity }}$
- Feature matrix: $\mathbf{F}(k)$, utilized for exposing the hidden sparsity, is such that $\mathbf{F}(k) \mathbf{w}(k)$ becomes a sparse vector. Practical selections of $\mathbf{F}(k)$ must be based on some a priori information about the unknown system.
- The plain sparsity promoting term is non-differentiable and is replaced by
$G_{\beta}(\mathbf{w}) \triangleq \sum_{i=0}^{N}\left(1-\frac{1}{1+\beta\left|w_{i}\right|}\right)$,
β trading off smoothness and quality of approximation.

l_{0}-norm F-LMS algorithms

- The gradient $\nabla G_{\beta}(\mathbf{w})=\mathbf{g}_{\beta}(\mathbf{w})$
becomes $\left[g_{\beta}\left(w_{0}\right) \cdots g_{\beta}\left(w_{N}\right)\right]^{T}$,
with $g_{\beta}\left(w_{i}\right)=\frac{\beta \operatorname{sgn}\left(w_{i}\right)}{\left(1+\beta\left|w_{i}\right|\right)^{2}}$ (curve with $\beta=5$).

- The recursive expression of the l_{0}-F-LMS algorithm is then obtained: $\mathbf{w}(k+1)=\mathbf{w}(k)+\mu e(k) \mathbf{x}(k)-\mu(\alpha \mathbf{p}(k)$ $+\lambda \mathbf{g}_{\beta}(\mathbf{w}(k))$,
where $0<\alpha, \lambda \ll 1, \mu$ is the step-size and $\mathbf{p}(k) \in \mathbb{R}^{N+1}$ is the gradient of $\|\mathbf{F}(k) \mathbf{w}(k)\|_{1}$.

Sparse lowpass systems

- The l_{0}-F-LMS Algorithm for sparse lowpass systems
- Unknown system has lowpass narrowband spectrum \Rightarrow its impulse response is smooth \Rightarrow the difference between adjacent coefficients is small
- Let $\mathbf{F} \in \mathbb{R}^{N \times(N+1)}=\left[\begin{array}{cccc}1 & -1 & & \mathbf{0} \\ & \ddots & \ddots & \\ \mathbf{0} & & 1 & -1\end{array}\right]$
$\Rightarrow \mathbf{F w}(k)$ is a sparse vector
- Therefore, $\mathbf{p}(k)=\left[p_{0}(k) \cdots p_{N}(k)\right]^{T}$ is given by
$p_{i}(k)=\left\{\begin{aligned} & \operatorname{sgn}\left(w_{0}(k)-w_{1}(k)\right) \text { if } i=0, \\ &-\operatorname{sgn}\left(w_{i-1}(k)-w_{i}(k)\right) \\ &+\operatorname{sgn}\left(w_{i}(k)-w_{i+1}(k)\right) \\ & \text { if } i=1, \cdots, N-1, \\ &-\operatorname{sgn}\left(w_{N-1}(k)-w_{N}(k)\right) \text { if } i=N .\end{aligned}\right.$

Sparse highpass systems

- The l_{0}-F-LMS Algorithm for sparse highpass systems
- Unknown system has highpass narrowband spectrum \Rightarrow adjacent coefficients have similar absolute values, but with opposite signs \Rightarrow the sum of adjacent coefficients is small
- Let $\mathbf{F} \in \mathbb{R}^{N \times(N+1)}=\left[\begin{array}{cccc}1 & 1 & & \mathbf{0} \\ & \ddots & \ddots & \\ \mathbf{0} & & 1 & 1\end{array}\right]$

$$
\Rightarrow \mathbf{F w}(k) \text { is a sparse vector }
$$

- Therefore, $\mathbf{p}(k)=\left[p_{0}(k) \cdots p_{N}(k)\right]^{\mathrm{T}}$ is given by

$$
p_{i}(k)= \begin{cases}\operatorname{sgn}\left(w_{0}(k)+w_{1}(k)\right) & \text { if } i=0 \\ \operatorname{sgn}\left(w_{i-1}(k)+w_{i}(k)\right) \\ +\operatorname{sgn}\left(w_{i}(k)+w_{i+1}(k)\right) \\ \text { if } i=1, \cdots, N-1 \\ \operatorname{sgn}\left(w_{N-1}(k)+w_{N}(k)\right) & \text { if } i=N\end{cases}
$$

Simulations

- Algorithms tested: LMS, proportionate LMS (PLMS), F-LMS, and l_{0}-F-LMS
- Input signals $(\mathrm{SNR}=20 \mathrm{~dB}): x(k) \sim \mathcal{N}(0,1)$ and $x(k)$ correlated signal $\left(\lambda_{\max } / \lambda_{\text {min }}=20\right)$
- Filter order: $N=99$ (100 coefficients) initialized as $\mathbf{w}(0)=[0, \cdots, 0]^{\mathrm{T}}$
- Constants: $\beta=20, \alpha=0.05$, and $\lambda=0.005$
- Unknown block sparse lowpass system: $\mathbf{w}_{o, l}=$ $\left[0.4,0.4, \cdots, 0.4,0_{1 \times 70}\right]^{\mathrm{T}}$
- Unknown block sparse highpass system: $\mathbf{w}_{o, h}=\left[0.4,-0.4,0.4 \cdots,-0.4, \mathbf{0}_{1 \times 70}\right]^{\mathrm{T}}$
- $\mathbf{w}_{o, l}^{2}$ (refers to an upsampled by 2 version) and $\mathbf{w}_{o, l}^{4}$ (refers to an upsampled by 4 version)

Learning curves of algorithms under test, considering: (1, left) $\mathbf{w}_{o, l}$ and $\mathbf{p}_{l}(k)$ (uncorrelated input when not mentioned explicitly); (2) $\mathbf{w}_{o, h}$ and $\mathbf{p}_{h}(k)$.

Simulations

Learning curves: (1, left) $\mathbf{w}_{o, l}, \mathbf{p}_{l}(k)$, and correlated input signal; (4) $\mathbf{w}_{o, h}, \mathbf{p}_{h}(k)$, and correlated input signal.

Learning curves: $(1$, left $) \mathbf{w}_{o, l}^{2}$ and $\mathbf{p}_{l}^{2}(k) ;(2) \mathbf{w}_{o, h}^{2}$ and $\mathbf{p}_{h}^{2}(k)$.

Learning curves: (1, left) $\mathbf{w}_{o, l}^{4}$ and $\mathbf{p}_{l}^{4}(k) ;(2) \mathbf{w}_{o, h}^{4}$ and $\mathbf{p}_{h}^{4}(k)$

Conclusions

- We generalize the F-LMS algorithm and propose the l_{0}-F-LMS algorithm so that it can exploit hidden and plain sparsity in unknown systems
- Hidden sparsity is disclosed by applying the feature matrix while using the l_{1}-norm promotes a sparse vector
- Whenever we know the feature of system, this strategy can be utilized in the presence of hidden and plain sparsity
- Simulation results corroborate the superiority of the l_{0}-F-LMS algorithm over the F-LMS, the PLMS, and the LMS algorithms

