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Introduction

Motivation
•Problem: semi-supervised clustering, i.e., splitting a dataset into

disjoint classes under the assumption that the cluster affiliation
is known for certain data points

•Assumption: nodes within a cluster are similar and nodes from
different clusters are dissimilar

•Example social network: similarity links ↔ follower/friends
dissimilarity links ↔ blocking or quoting behavior

•Question: how can dissimilarity information be incorporated into
total variation based clustering

Contributions
• Introduce the signed total variation

• Formulate semi-supervised two-class clustering with dissimilarity
based on the signed total variation

• Introduce a suitable `1 regularization to ensure reliable clustering
even when only few labels are known

•Develope a low-complexity ADMM-based algorithm

Modeling of the data
•Data is represented by a graph G(V ,W) with node set
V = {1, . . . , N} and weighted adjacency matrix W ∈ RN×N

• V+ and V− = V\V+ denote the clusters

•Modeling of the clusters: label vector x ∈ RN with xi = 1 for
i ∈ V+ and xi = −1 for i ∈ V−

•Denote sampled nodes by L ⊂ V , L+ = {i ∈ L : xi = 1},
L− = {i ∈ L : xi = −1}

Total variation based unsigned clustering
•Consider unsigned weight matrix W, Wij ≥ 0

•A positive weight Wij > 0 models similarity between i and j

•Min-cut approach determines V+ and V− = V\V+ via

min
V+

∑
j∈V+

∑
i∈V\V+

Wij s.t. L+ ⊆ V+, L− ⊆ V\V+ (1)

•Constrained total variation minimization:

min
x

∑
i∈V

∑
j∈V

|xi − xj|Wij

s.t. xi = −1 for i ∈ L−, xi = 1 for i ∈ L+

(2)

• If the min-cut problem (1) has a unique solution {V−,V+}, then
(2) yields the equivalent solution

xi =

{
−1, i ∈ V−,

1, i ∈ V+

Signed Clustering

Signed Laplacian
•Negative weight Wij < 0 models dissimilarity between i and j

• Signed graph Laplacian: L̄ = D̄ −W with the signed degree
matrix D̄ = diag{d̄1, . . . , d̄N}, d̄i =

∑
j=1 |Wij|

• Induced Laplacian form:

xT L̄x =
1

2

∑
i

∑
j

(xi − sign(Wij)xj)
2|Wij|

• For negative edge weights, (xi − sign(Wij)xj)
2|Wij| = (xi +

xj)
2|Wij| will be small if xi ≈ −xj

Signed total variation
•This motivates the new concept of the signed total variation:

‖x‖TV ,
∑
i

∑
j

|xi − sign(Wij)xj| |Wij|

•The signed total variation ‖x‖TV is a semi-norm and convex

• For unbalanced graphs (contains a cycle with an odd number of
edges with negative weight) it is a norm

Regularization
•Problem 1: total variation minimization tends to declare (one

of) the label sets L+, L− as clusters

•Problem 2: the signed total variation tends to assign zero values
since both |xi + xj| and |xi − xj| can be minimized by setting
xi = xj = 0

•Regularized signed total variation clustering problem:

min
x
‖x‖TV + λ−

∑
i∈N−
|1 + xi| + λ+

∑
i∈N+

|1− xi|

s.t. xi = −1 for i ∈ L−, xi = 1 for i ∈ L+,

(3)

where

N (i) = {j ∈ V\L : Wij > 0},
N (A) =

⋃
i∈A

N (i) for A ⊂ V ,

N− = N (L−)\N (L+), N+ = N (L+)\N (L−)

•Regularization terms with λ− and λ+ are introduced to assign
xi = 1 (xi = −1) to the majority of nodes in N+ (N−)

•Regularization parameters can be tuned automatically, see Al-
gorithm 1

Algorithm
•Propose augmented ADMM to solve (3)

•Resulting algorithm can be implemented in a distributed manner

Algorithm 1 Signed TV clustering with parameter tuning

Input: W, L−, L+, xmin (slightly smaller than 1)

Initialize: λ− = 0, λ+ = 0
1: repeat

2: calculate minimizer x of (3)
3: M− = {i ∈ N− : xi < 0}
4: M+ = {i ∈ N+ : xi > 0}
5: x− = mini∈M− |xi|
6: x+ = mini∈M+ |xi|
7: a = 0

8: if M− = ∅ or x− < xmin then
9: increase λ−, a = 1

10: end if

11: if M+ = ∅ or x+ < xmin then
12: increase λ+, a = 1
13: end if

14: until a = 0

Output: x

Simulations

Setup
• Simulations on two-moon datasets with N = 500 nodes

•Coordinates of each node generated from a random angle on a
center curve and Gaussian jitter (variance σ2 = 0.09)

•Graph generated as kNN graph with k = 10 neighbors and
Gaussian kernel for edge weights (parameter σ1 = 0.6)

•M samples drawn randomly while ensuring at least one known
label from each cluster

•L randomly chosen dissimilarity edges between pairs of nodes
from different clusters

Illustrative example
•Different colors represent different clusters

• Sampled nodes represented by dark colors

•Dissimilarity edges represented by dashed lines

Ground truth

Unsigned total variation

Signed total variation

Laplacian regularized least squares with dissimilarity (parameters de-

termined by grid search) [Goldberg et al., PMLR’07]

Monte Carlo simulations
Error rates in percent (mean and standard deviation)

Algorithm 1 LapRLSd

M = 2 M = 5 M = 10 M = 2 M = 5 M = 10

L = 0 7.3± 12.5 4.0± 9.0 1.8± 5.1 13.6± 9.2 12.8± 8.8 6.1± 6.2
L = 5 3.0± 9.1 1.2± 3.5 1.0± 2.4 8.4± 7.2 5.8± 4.7 3.4± 3.2
L = 10 1.4± 6.0 0.9± 1.9 0.7± 0.7 5.0± 5.4 3.6± 3.5 2.5± 2.1

Discussion
• Incorporation of dissimilarity substantially improves performance

•Total variation is directly connected to a minimum cut and there-
fore outperforms Laplacian based algorithms

•Most state of the art algorithms have free parameters

•Proposed algorithm has no free parameters
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