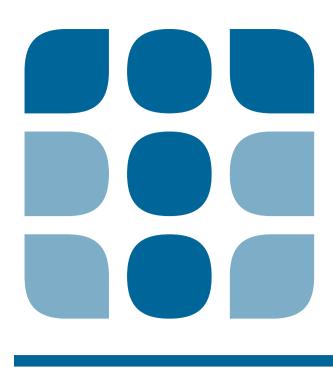
Semi-Supervised Clustering Based on Signed Total Variation



institute of telecommunications

Introduction

Motivation

- Problem: semi-supervised clustering, i.e., splitting a dataset into disjoint classes under the assumption that the cluster affiliation is known for certain data points
- Assumption: nodes within a cluster are similar and nodes from different clusters are dissimilar
- Example social network: similarity links \leftrightarrow follower/friends dissimilarity links \leftrightarrow blocking or quoting behavior
- Question: how can dissimilarity information be incorporated into total variation based clustering

Contributions

- Introduce the signed total variation
- Formulate semi-supervised two-class clustering with dissimilarity based on the signed total variation
- Introduce a suitable ℓ_1 regularization to ensure reliable clustering even when only few labels are known
- Develope a low-complexity ADMM-based algorithm

Modeling of the data

- ullet Data is represented by a graph $\mathcal{G}(\mathcal{V},\mathbf{W})$ with node set $\mathcal{V} = \{1, \ldots, N\}$ and weighted adjacency matrix $\mathbf{W} \in \mathbb{R}^{N \times N}$
- \mathcal{V}^+ and $\mathcal{V}^- = \mathcal{V} ackslash \mathcal{V}^+$ denote the clusters
- Modeling of the clusters: label vector $\mathbf{x} \in \mathbb{R}^N$ with $x_i = 1$ for $i \in \mathcal{V}^+$ and $x_i = -1$ for $i \in \mathcal{V}^-$
- Denote sampled nodes by $\mathcal{L} \subset \mathcal{V}$, $\mathcal{L}^+ = \{i \in \mathcal{L} : x_i = 1\}$, $\mathcal{L}^- = \{ i \in \mathcal{L} : x_i = -1 \}$

Total variation based unsigned clustering

- Consider unsigned weight matrix \mathbf{W} , $W_{ii} \ge 0$
- A positive weight $W_{ij} > 0$ models similarity between i and j
- Min-cut approach determines \mathcal{V}^+ and $\mathcal{V}^- = \mathcal{V} \setminus \mathcal{V}^+$ via

$$\min_{\mathcal{V}^+} \sum_{j \in \mathcal{V}^+} \sum_{i \in \mathcal{V} \setminus \mathcal{V}^+} W_{ij}$$
 s.t. $\mathcal{L}^+ \subseteq \mathcal{V}^+, \ \mathcal{L}^- \subseteq \mathcal{V} \setminus \mathcal{V}^+$ (1)

• Constrained total variation minimization:

$$\min_{\mathbf{x}} \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{V}} |x_i - x_j| W_{ij}$$
s.t. $x_i = -1$ for $i \in \mathcal{L}^-$, $x_i = 1$ for $i \in \mathcal{L}^+$
(2)

• If the min-cut problem (1) has a unique solution $\{\mathcal{V}^-, \mathcal{V}^+\}$, then (2) yields the equivalent solution

$$x_i = \begin{cases} -1, & i \in \mathcal{V}^-, \\ 1, & i \in \mathcal{V}^+ \end{cases}$$

Peter Berger, Thomas Dittrich, and Gerald Matz

Institute of Telecommunications, Technische Universität Wien, Austria <firstname>.<lastname>@nt.tuwien.ac.at

Signed Clustering

Signed Laplacian

- Negative weight $W_{ij} < 0$ models dissimilarity between i and j
- Signed graph Laplacian: $ar{\mathbf{L}}=ar{\mathbf{D}}-\mathbf{W}$ with the signed degree matrix $ar{\mathbf{D}} = ext{diag}\{ar{d}_1,\dots,ar{d}_N\}$, $ar{d}_i = \sum_{j=1} |W_{ij}|$
- Induced Laplacian form:

$$\mathbf{x}^T \bar{\mathbf{L}} \mathbf{x} = \frac{1}{2} \sum_{i} \sum_{j} (x_i - \operatorname{sign}(W_{ij}) x_j)^2 |W_{ij}|$$

• For negative edge weights, $(x_i - \operatorname{sign}(W_{ij})x_j)^2 |W_{ij}| = (x_i + i)^2 |W_{ij}| = (x_i + i)^2 |W_{ij}|$ $(x_i)^2 |W_{ij}|$ will be small if $x_i \approx -x_j$

Signed total variation

• This motivates the new concept of the signed total variation:

$$\|\mathbf{x}\|_{\mathrm{TV}} \triangleq \sum_{i} \sum_{j} |x_i - \operatorname{sign}(W_{ij})x_j| |W_{ij}|$$

- The signed total variation $\|\mathbf{x}\|_{TV}$ is a semi-norm and convex
- For unbalanced graphs (contains a cycle with an odd number of edges with negative weight) it is a norm

Regularization

- Problem 1: total variation minimization tends to declare (one of) the label sets \mathcal{L}^+ , \mathcal{L}^- as clusters
- Problem 2: the signed total variation tends to assign zero values since both $|x_i + x_j|$ and $|x_i - x_j|$ can be minimized by setting $x_i = x_j = 0$
- Regularized signed total variation clustering problem:

$$\begin{split} \min_{\mathbf{x}} & \|\mathbf{x}\|_{\mathrm{TV}} + \lambda^{-} \sum_{i \in \mathcal{N}^{-}} |1 + x_{i}| + \lambda^{+} \sum_{i \in \mathcal{N}^{+}} |1 - x_{i}| \\ \text{s.t.} & x_{i} = -1 \text{ for } i \in \mathcal{L}^{-}, \ x_{i} = 1 \text{ for } i \in \mathcal{L}^{+}, \end{split}$$
(3)

where

$$\begin{split} \mathcal{N}(i) &= \{ j \in \mathcal{V} \backslash \mathcal{L} : W_{ij} > 0 \}, \\ \mathcal{N}(\mathcal{A}) &= \bigcup_{i \in \mathcal{A}} \mathcal{N}(i) \text{ for } \mathcal{A} \subset \mathcal{V}, \\ \mathcal{N}^{-} &= \mathcal{N}(\mathcal{L}^{-}) \backslash \mathcal{N}(\mathcal{L}^{+}), \quad \mathcal{N}^{+} = \mathcal{N}(\mathcal{L}^{+}) \backslash \mathcal{N}(\mathcal{L}^{-}) \end{split}$$

- Regularization terms with λ^- and λ^+ are introduced to assign $x_i = 1$ ($x_i = -1$) to the majority of nodes in \mathcal{N}^+ (\mathcal{N}^-)
- Regularization parameters can be tuned automatically, see Algorithm 1

Algorithm

- Propose augmented ADMM to solve (3)
- Resulting algorithm can be implemented in a distributed manner

6: 10: 11: 12: 13:

Setup

- Coordinates of each node generated from a random angle on a center curve and Gaussian jitter (variance $\sigma^2 = 0.09$)
- Graph generated as kNN graph with k = 10 neighbors and Gaussian kernel for edge weights (parameter $\sigma_1 = 0.6$)
- \bullet L randomly chosen dissimilarity edges between pairs of nodes from different clusters

Illustrative example

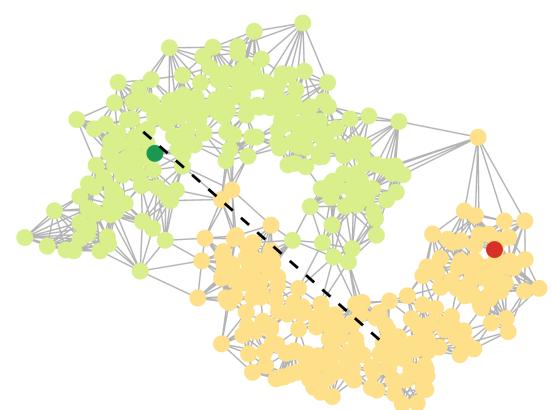
- Different colors represent different clusters
- Sampled nodes represented by dark colors
- Dissimilarity edges represented by dashed lines
- **Ground truth**

Algorithm 1 Signed TV clustering with parameter tuning Input: W, \mathcal{L}^- , \mathcal{L}^+ , x_{\min} (slightly smaller than 1) Initialize: $\lambda^- = 0$, $\lambda^+ = 0$ 1: repeat calculate minimizer \mathbf{x} of (3) $\mathcal{M}^- = \{ i \in \mathcal{N}^- \colon x_i < 0 \}$ $\mathcal{M}^+ = \{ i \in \mathcal{N}^+ \colon x_i > 0 \}$ $x^- = \min_{i \in \mathcal{M}^-} |x_i|$ $x^+ = \min_{i \in \mathcal{M}^+} |x_i|$ a = 0if $\mathcal{M}^- = \emptyset$ or $x^- < x_{\min}$ then increase λ^- , a=1end if if $\mathcal{M}^+ = \emptyset$ or $x^+ < x_{\min}$ then increase λ^+ , a=1end if 14: **until** a = 0

Simulations

Output: x

- Simulations on two-moon datasets with N = 500 nodes
- M samples drawn randomly while ensuring at least one known label from each cluster



Signed total variation

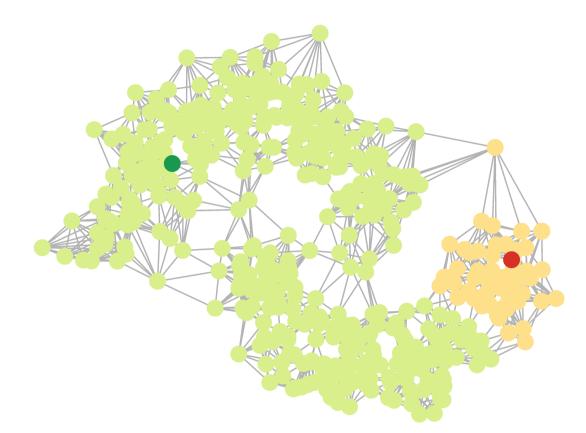
Laplacian regularized least squares with dissimilarity (parameters determined by grid search) [Goldberg et al., PMLR'07]

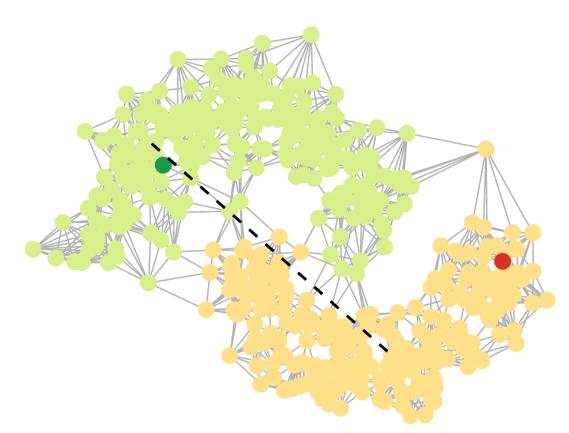
Monte Carlo simulations **Error** rates in percent (mean and standard deviation)

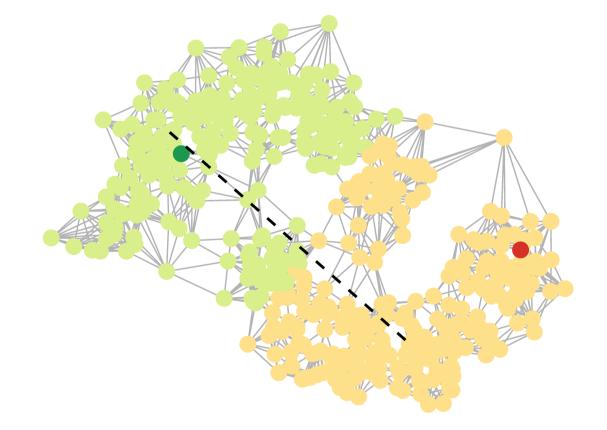
	Algorithm 1			LapRLSd		
	M = 2	M = 5	M = 10	M = 2	M = 5	M = 10
L = 0	7.3 ± 12.5	4.0 ± 9.0	1.8 ± 5.1	13.6 ± 9.2	12.8 ± 8.8	6.1 ± 6.2
L = 5	3.0 ± 9.1	1.2 ± 3.5	1.0 ± 2.4	8.4 ± 7.2	5.8 ± 4.7	3.4 ± 3.2
L = 10	1.4 ± 6.0	0.9 ± 1.9	0.7 ± 0.7	5.0 ± 5.4	3.6 ± 3.5	2.5 ± 2.1

Discussion

Unsigned total variation







 Incorporation of dissimilarity substantially improves performance • Total variation is directly connected to a minimum cut and therefore outperforms Laplacian based algorithms

• Most state of the art algorithms have free parameters

Proposed algorithm has no free parameters

Funded by WWTF Grant ICT15-119