Signal sparsity estimation from compressive noisy projections via sparsified random matrices

41st IEEE ICASSP 20-25 March 2016, Shanghai, China

Chiara Ravazzi

in collaboration with

Sophie M. Fosson Tiziano Bianchi Enrico Magli

Politecnico di Torino - DET

Department of Electronics and Telecommunications

www.crisp-erc.eu

Compressed Sensing (CS)

CS system:

technique for compressed acquisition

$$y = Ax + \eta$$

- ► $x \in \mathbb{R}^n \rightsquigarrow$ sparse signal (with at most $k \ll n$ nonzero entries)
- $A \in \mathbb{R}^{m \times n} \rightsquigarrow$ sensing matrix (m < n)
- $\eta \in \mathbb{R}^m$ additive Gaussian noise $N(0, \sigma^2)$
- reconstruction from few linear measurements (exploiting signal's sparsity)

Careful design: knowledge of k relevant

- sensing matrix: RIP-k, NSP-k, coherence-k condition
- number of measurements: $m = O(k \log n/k)$
- recovery algorithms: tuning parameters depends on k (OMP, CoSaMP, Lasso, IRLS, ...)

Sparsity estimation

Sparsity: major gap between theory and practice

- CS theory assumption: knowledge of sparsity degree k
- In practice: not always true
 - time-varying sparsity (spectrum sensing)
 - spatially-varying sparsity (block-based acquisition of images)
 - ► is a signal actually sparse in some basis?

Related literature:

- streaming measurements in CS [Romberg&al.2008]
- sparsity estimation via recovery [Wang&al.2012]
- sparsity estimation from measurements [Lopes2013]

Our contribution: estimate sparsity degree <u>from measurements</u> via sparse random matrices

Sparse sensing matrices

CS system: $y = Ax + \eta$

- $x \in \mathbb{R}^n \rightsquigarrow k$ -sparse signal (with at most k nonzero entries)
- + η additive Gaussian noise $\mathrm{N}(\mathbf{0},\sigma^2)$
- $A \rightsquigarrow \gamma$ -sparsified random matrix

$$a_{ij} \sim \left\{ egin{array}{ll} 0 & ext{with prob. } 1-\gamma \ \mathcal{N}\left(0,rac{1}{\gamma}
ight) & ext{with prob. } \gamma. \end{array}
ight.$$

Sparse ($\gamma = \Theta(n^{-1})$) vs dense ($\gamma = \Theta(1)$) matrices:

- + low computational complexity and memory requirements
- + enable reconstruction with a slight performance degradation

$$\psi(\mathbf{k}) = \gamma \mathbf{k} = \tau \Longrightarrow \mathbf{m} \ge O\left(\frac{k \log(n/k)}{\tau \log(1 + x_{\min}^2 k/\tau)} \right)$$

Sparsity estimation

Maximum Likelihood estimation:

- y = Ax, x is k-sparse
- $\mathbf{y} \sim \text{Ber}(\mathbf{p}_k), \mathbf{p}_k = 1 (1 \gamma)^k$
- estimate k from ||y||₀
 (number of nonzeros in y)

$$\Longrightarrow \hat{k}_{ML} = \left\lfloor \frac{\log\left(1 - \frac{\|y\|_0}{m}\right)}{\log(1 - \gamma)} \right\rfloor$$

Thm 1: strong consistency

- for fixed k: $|\hat{k} k|/k \le O(\sqrt{\log m/m})$ w.p.1.
- for large k, m, n: many regimes of $\psi(k) = \gamma k$ for strong consistency w.p.1.

Noisy Setting

Sparsity estimation: high computational complexity

- + $\mathbf{y} = \mathbf{A}\mathbf{x} + \eta$, \mathbf{x} is k-sparse, $\eta \sim \mathcal{N}(\mathbf{0}, \sigma^2)$
- $y \sim f_k$ is a mixture of up to 2^k Gaussians: intractable

Our approach:

• approximate f_k as 2-component Gaussian mixture (2-GMM)

$$f_k^{2-GMM}(\mathbf{y}) = (1-p_k)\phi\left(\mathbf{y}|\sigma^2\right) + p_k\phi\left(\mathbf{y}|\sigma^2 + \frac{\|\mathbf{x}\|_2^2}{p_k}\right)$$

- estimate 2-GMM parameters via Expectation-Maximization
- compute

$$\hat{k}_{EM} = \left\lfloor \frac{\log(1 - p_k)}{\log(1 - \gamma)} \right\rfloor$$

Noisy Setting

Thm 2: 2-GMM approximation error

2-GMM approximates real distribution for large k: $x_{\min}^2 k = \Theta(1) \Longrightarrow$

$$\|f_k - f_k^{2-\mathsf{GMM}}\|_{\mathsf{Kol}} \leq \mathsf{C}(\psi(k) + \psi(k)^2), \mathsf{C} \in \mathbb{R}, \psi(k) = \gamma k$$

Summary: Sparse matrices are good

- for recovery [Wang&Wainwright2010]
- for sparsity estimation in noiseless setting
- for sparsity estimation in noisy setting (2-GMM approximation error is bounded)

Numerical experiments

Synthetic signals

Effect of noise: $\psi(\mathbf{k}) = \Theta(1)$

- minimal SNR = $x_{\min}^2 k / \sigma^2 = 10$ dB
- mean relative error (MRE) averaged over 400 runs

Numerical experiments

Synthetic signals

Mean relative error (MRE) of estimated sparsity (k = 1000)

Non-exactly sparse signals

Sparsity defined as the fraction of DCT components above au

Sparsity estimation for signal recovery

- $\mathcal{S} = \{x \in \mathbb{R}^{1600}, k \in \{4, ..., 200\}\}$, SNR=30dB
 - CoSaMP: dense matrix ($\gamma = 1$), $m = 4k_{\max}$
 - EM-Sp/CoSaMP:
 - Sparse matrix ($\gamma = 8/k_{max}$), k_{max} measurements, compute \hat{k} ;
 - Dense matrix ($\gamma = 1$), acquire new measurements
 - recover via CoSaMP.

<u>Total</u> measurements $m = \min\{4k_{\max}, \max\{10\hat{k}, k_{\max} + 4\hat{k}\}\}$

Sparsity estimation:

- noise-free setting: asymptotic behavior of ML-estimator for different regimes of CS system parameters;
- noisy setting: sparsity estimation via EM algorithm.
- numerical experiments: synthetic and real data

Future developments: useful tool in several applications

- Adaptive acquisition and sequential recovery
- Model based compressed sensing
- Estimation of support overlap between correlated signals
 - distributed compressed sensing (JSM-1, JSM-2)
 - embeddings of Jaccard coefficients for near-duplicates detection

This paper and companion papers:

- C. Ravazzi, S. M. Fosson, T. Bianchi, E. Magli, Signal sparsity estimation from compressive noisy projections via sparsified random matrices, Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing 2016.
- C. Ravazzi, S. M. Fosson, T. Bianchi, E. Magli, Sparsity Estimation from Compressive Projections via Sparse Random Matrices, submitted to IEEE Transactions on Signal Processing, March 2016.
- D. Valsesia, S. M. Fosson, C. Ravazzi, T. Bianchi, E. Magli, SparseHash: Embedding Jaccard coefficient between support of signals, submitted to IEEE International Conference on Multimedia and Expo 2016