Alp Ozdemir¹, Mark A. Iwen^{1,2} and Selin Aviyente¹

¹ Department of Electrical and Computer Engineering, Michigan State University ² Department of the Mathematics, Michigan State University

December 15, 2015

Outline

1 Introduction

2 Background

3 Method

Identifying Subtensors: Direct Division & Sequential Division

Locally Linear Higher Order Singular Value Decomposition

4 Results

5 Conclusions

6 Acknowledgements

■ High dimensional data sets in ℝ^D lie in a lower d-dimensional manifold, or subspace, with d ≪ D.

- High dimensional data sets in ℝ^D lie in a lower *d*-dimensional manifold, or subspace, with *d* ≪ *D*.
- Linear subspace estimation methods: PCA, SVD.

<ロト <回 > < 注 > < 注 >

- High dimensional data sets in ℝ^D lie in a lower d-dimensional manifold, or subspace, with d ≪ D.
- Linear subspace estimation methods: PCA, SVD.
- Manifold Learning Methods:
 - Multidimensional Scaling (MDS): Embed the data into a graph to construct d-dimensional manifold (Tenenbaum et al. 2000).
 - Locally linear embedding (LLE)(Roweis and Saul 2000).
 - Geometric Multi-resolution Analysis (GMRA): Data dependent multi-scale dictionaries (Allard et al. 2012).

- High dimensional data sets in ℝ^D lie in a lower d-dimensional manifold, or subspace, with d ≪ D.
- Linear subspace estimation methods: PCA, SVD.
- Manifold Learning Methods:
 - Multidimensional Scaling (MDS): Embed the data into a graph to construct d-dimensional manifold (Tenenbaum et al. 2000).
 - Locally linear embedding (LLE)(Roweis and Saul 2000).
 - Geometric Multi-resolution Analysis (GMRA): Data dependent multi-scale dictionaries (Allard et al. 2012).
- However, these approaches are not directly applicable to high order data, e.g. hyperspectral imaging, social and biological networks.

A D > A B > A B > A B >

Introduction

Linear Low-Rank Structure Learning:

・ロト ・聞ト ・ヨト ・ヨト

Introduction

Linear Low-Rank Structure Learning:

- Higher order singular value decomposition (HOSVD)
- Parallel Factor Analysis (PARAFAC)

・ロト ・ 四ト ・ モト ・ モト

Introduction

Linear Low-Rank Structure Learning:

- Higher order singular value decomposition (HOSVD)
- Parallel Factor Analysis (PARAFAC)
- Manifold Learning Methods for Tensors:

Introduction

Linear Low-Rank Structure Learning:

- Higher order singular value decomposition (HOSVD)
- Parallel Factor Analysis (PARAFAC)
- Manifold Learning Methods for Tensors:
 - He et al.(2005) extended locality preserving projections to second order tensors.

Linear Low-Rank Structure Learning:

- Higher order singular value decomposition (HOSVD)
- Parallel Factor Analysis (PARAFAC)
- Manifold Learning Methods for Tensors:
 - He et al.(2005) extended locality preserving projections to second order tensors.
 - Dai and Yeung (2006) extended following embedding methods to tensors:

Linear Low-Rank Structure Learning:

- Higher order singular value decomposition (HOSVD)
- Parallel Factor Analysis (PARAFAC)
- Manifold Learning Methods for Tensors:
 - He et al.(2005) extended locality preserving projections to second order tensors.
 - Dai and Yeung (2006) extended following embedding methods to tensors:
 - Local discriminant embedding
 - Neighborhood preserving embedding
 - Locality preserving projection

Linear Low-Rank Structure Learning:

- Higher order singular value decomposition (HOSVD)
- Parallel Factor Analysis (PARAFAC)
- Manifold Learning Methods for Tensors:
 - He et al.(2005) extended locality preserving projections to second order tensors.
 - Dai and Yeung (2006) extended following embedding methods to tensors:
 - Local discriminant embedding
 - Neighborhood preserving embedding
 - Locality preserving projection
- These methods are mostly limited to learning the optimal linear transformation for supervised classification of high-order data.

Introduction

 Goal: Propose a unsupervised data structure learning method to exploit locally linear low-rank structure of high-order data.

Introduction

- Goal: Propose a unsupervised data structure learning method to exploit locally linear low-rank structure of high-order data.
- Two step approach:

- Goal: Propose a unsupervised data structure learning method to exploit locally linear low-rank structure of high-order data.
- Two step approach:
 - Decompose the tensor into subtensors.

- Goal: Propose a unsupervised data structure learning method to exploit locally linear low-rank structure of high-order data.
- Two step approach:
 - Decompose the tensor into subtensors.
 - Apply higher order singular value decomposition (HOSVD) to these subtensors.

Background

Outline

2 Background

3 Method

- Identifying Subtensors: Direct Division & Sequential Division
- Locally Linear Higher Order Singular Value Decomposition
- 4 Results
- 5 Conclusions
- 6 Acknowledgements

■ A multidimensional array with *N* modes $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ is called a tensor, where $x_{i_1, i_2, ... i_N}$ denotes the $(i_1, i_2, ... i_N)^{th}$ element of the tensor \mathcal{X} .

- A multidimensional array with *N* modes $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ is called a tensor, where $x_{i_1, i_2, ... i_N}$ denotes the $(i_1, i_2, ... i_N)^{th}$ element of the tensor \mathcal{X} .
- Vectors obtained by fixing all indices of the tensor except the one that corresponds to *n*th mode are called mode-*n* fibers.

- A multidimensional array with *N* modes $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ is called a tensor, where $x_{i_1, i_2, ... i_N}$ denotes the $(i_1, i_2, ... i_N)^{th}$ element of the tensor \mathcal{X} .
- Vectors obtained by fixing all indices of the tensor except the one that corresponds to *n*th mode are called mode-*n* fibers.
- Tensor matricization: The mode-n matricization of tensor *Y* is denoted as **Y**_(n) and is obtained by arranging mode-n fibers to be the columns of the resulting matrix.

- A multidimensional array with *N* modes $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ is called a tensor, where $x_{i_1,i_2,..i_N}$ denotes the $(i_1, i_2, ...i_N)^{th}$ element of the tensor \mathcal{X} .
- Vectors obtained by fixing all indices of the tensor except the one that corresponds to *n*th mode are called mode-*n* fibers.
- Tensor matricization: The mode-n matricization of tensor *Y* is denoted as **Y**_(n) and is obtained by arranging mode-n fibers to be the columns of the resulting matrix.
- Mode-*n* product: $\mathcal{Y} = \mathcal{X} \times_n \mathbf{U}$ yields $\mathbf{Y}_{(n)} = \mathbf{U}\mathbf{X}_{(n)}$.

・ロット 御マ キョマ キョン

- A multidimensional array with *N* modes $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ is called a tensor, where $x_{i_1, i_2, ... i_N}$ denotes the $(i_1, i_2, ... i_N)^{th}$ element of the tensor \mathcal{X} .
- Vectors obtained by fixing all indices of the tensor except the one that corresponds to *n*th mode are called mode-*n* fibers.
- Tensor matricization: The mode-n matricization of tensor *Y* is denoted as **Y**_(n) and is obtained by arranging mode-n fibers to be the columns of the resulting matrix.
- Mode-*n* product: $\mathcal{Y} = \mathcal{X} \times_n \mathbf{U}$ yields $\mathbf{Y}_{(n)} = \mathbf{U}\mathbf{X}_{(n)}$.
- Tensor *n*-rank of X is the collection of ranks of mode matrices X_(n): *n*-rank(X) = (rank(X₍₁₎), rank(X₍₂₎), ..., rank(X_(N))).

Higher-Order Singular Value Decomposition (HOSVD)

Any tensor $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ can be decomposed as:

$$\mathcal{X} = \mathcal{S} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \dots \times_N \mathbf{U}^{(N)}, \tag{1}$$

(a)

Higher-Order Singular Value Decomposition (HOSVD)

Any tensor $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ can be decomposed as:

$$\mathcal{X} = \mathcal{S} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \dots \times_N \mathbf{U}^{(N)}, \tag{1}$$

where $\mathbf{U}^{(n)} \in \mathbb{R}^{l_n \times l_n}$ s are the left singular vectors of $\mathbf{X}_{(n)}$ and $S \in \mathbb{R}^{l_1 \times l_2 \times \ldots \times l_N}$ is the core tensor computed as:

$$S = \mathcal{X} \times_1 (\mathbf{U}^{(1)})^\top \times_2 (\mathbf{U}^{(2)})^\top \dots \times_N (\mathbf{U}^{(N)})^\top.$$
(2)

Outline

2 Background

3 Method

- Identifying Subtensors: Direct Division & Sequential Division
- Locally Linear Higher Order Singular Value Decomposition

4 Results

5 Conclusions

6 Acknowledgements

Method

Lentifying Subtensors: Direct Division & Sequential Division

Identifying Subtensors

Direct Division:

-Method

Lentifying Subtensors: Direct Division & Sequential Division

Identifying Subtensors

Direct Division:

■ Unfold tensor $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ across each mode to obtain $\mathbf{X}_n \in \mathbb{R}^{l_n \times \prod_{j \neq n} l_j}$ whose columns are the mode-*n* fibers of \mathcal{X} .

(a)

Lentifying Subtensors: Direct Division & Sequential Division

Identifying Subtensors

Direct Division:

- Unfold tensor $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ across each mode to obtain $\mathbf{X}_n \in \mathbb{R}^{l_n \times \prod_{j \neq n} l_j}$ whose columns are the mode-*n* fibers of \mathcal{X} .
- For each mode, the mode-*n* fibers are partitioned into *c_n* non-overlapping clusters through METIS (Karypis and Kumar 1998).

Lentifying Subtensors: Direct Division & Sequential Division

Identifying Subtensors

Direct Division:

- Unfold tensor $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ across each mode to obtain $\mathbf{X}_n \in \mathbb{R}^{l_n \times \prod_{j \neq n} l_j}$ whose columns are the mode-*n* fibers of \mathcal{X} .
- For each mode, the mode-*n* fibers are partitioned into *c_n* non-overlapping clusters through METIS (Karypis and Kumar 1998).
- Cartesian product of the fiber labels coming from different modes yields $K = \prod_{i=1}^{N} c_n$ subtensors \mathcal{Y}_k .

・ロット (雪) (日) (日)

Identifying Subtensors: Direct Division & Sequential Division

Identifying Subtensors

Direct Division:

- Unfold tensor $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ across each mode to obtain $\mathbf{X}_n \in \mathbb{R}^{l_n \times \prod_{j \neq n} l_j}$ whose columns are the mode-*n* fibers of \mathcal{X} .
- For each mode, the mode-*n* fibers are partitioned into *c_n* non-overlapping clusters through METIS (Karypis and Kumar 1998).
- Cartesian product of the fiber labels coming from different modes yields $K = \prod_{i=1}^{N} c_n$ subtensors \mathcal{Y}_k .

Method

Lentifying Subtensors: Direct Division & Sequential Division

Identifying Subtensors

Sequential Division:

-Method

Lentifying Subtensors: Direct Division & Sequential Division

Identifying Subtensors

Sequential Division:

Mode-1 fibers of X are grouped into c₁ clusters to obtain c₁ subtensors.

- Method

Lentifying Subtensors: Direct Division & Sequential Division

Identifying Subtensors

Sequential Division:

- Mode-1 fibers of X are grouped into c₁ clusters to obtain c₁ subtensors.
- Mode-2 fibers of each of the newly created subtensors are clustered into c₂ clusters separately which yields c₁ × c₂ subtensors.

Lentifying Subtensors: Direct Division & Sequential Division

Identifying Subtensors

Sequential Division:

- Mode-1 fibers of X are grouped into c₁ clusters to obtain c₁ subtensors.
- Mode-2 fibers of each of the newly created subtensors are clustered into c₂ clusters separately which yields c₁ × c₂ subtensors.
- This procedure is applied *N* times by clustering the fibers of different modes at each step and $K = \prod_{i=1}^{N} c_n$ subtensors are obtained.

Lentifying Subtensors: Direct Division & Sequential Division

Identifying Subtensors

Sequential Division:

- Mode-1 fibers of X are grouped into c₁ clusters to obtain c₁ subtensors.
- Mode-2 fibers of each of the newly created subtensors are clustered into c₂ clusters separately which yields c₁ × c₂ subtensors.
- This procedure is applied *N* times by clustering the fibers of different modes at each step and $K = \prod_{i=1}^{N} c_n$ subtensors are obtained.
- Choosing different ordering of the modes yields N! different possible decompositions, *Y_k*.

- Identifying Subtensors: Direct Division & Sequential Division

Identifying Subtensors

Sequential Division:

- Mode-1 fibers of X are grouped into c₁ clusters to obtain c₁ subtensors.
- Mode-2 fibers of each of the newly created subtensors are clustered into c₂ clusters separately which yields c₁ × c₂ subtensors.
- This procedure is applied *N* times by clustering the fibers of different modes at each step and $K = \prod_{i=1}^{N} c_n$ subtensors are obtained.
- Choosing different ordering of the modes yields N! different possible decompositions, *Y_k*.

Locally Linear Higher Order Singular Value Decomposition

Locally Linear High Order Singular Value Decomposition

Goal: Low *n*-rank approximation to subtensors of an *N*th order tensor $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ to better capture local nonlinearities.

Locally Linear Higher Order Singular Value Decomposition

Locally Linear High Order Singular Value Decomposition

Goal: Low *n*-rank approximation to subtensors of an *N*th order tensor $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ to better capture local nonlinearities.

■ Decompose tensor X into K subtensors $\mathcal{Y}_k \in \mathbb{R}^{I_{1,k} \times I_{2,k} \times \ldots \times I_{N,k}} \text{ with } k \in \{1, 2, \ldots, K\} \text{ by direct division or sequential division approaches.}$

Locally Linear Higher Order Singular Value Decomposition

Locally Linear High Order Singular Value Decomposition

Goal: Low *n*-rank approximation to subtensors of an *N*th order tensor $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ to better capture local nonlinearities.

- Decompose tensor X into K subtensors $\mathcal{Y}_k \in \mathbb{R}^{l_{1,k} \times l_{2,k} \times \ldots \times l_{N,k}} \text{ with } k \in \{1, 2, \ldots, K\} \text{ by direct division or sequential division approaches.}$
- Mapping functions f_ks are defined on the index sets from X to Y_k as:

$$f_k: J_1 \times J_2 \times \dots \times J_N \mapsto J_{1,k} \times J_{2,k} \times \dots \times J_{N,k}, \quad (3)$$

where $J_n = \{1, 2, ..., I_n\}$, $J_{n,k} \subset \{1, 2, ..., I_{n,k}\}$ with $n \in \{1, 2, ..., N\}$.

Locally Linear Higher Order Singular Value Decomposition

Locally Linear High Order Singular Value Decomposition

Goal: Low *n*-rank approximation to subtensors of an *N*th order tensor $\mathcal{X} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_N}$ to better capture local nonlinearities.

- Decompose tensor X into K subtensors $\mathcal{Y}_k \in \mathbb{R}^{l_{1,k} \times l_{2,k} \times \ldots \times l_{N,k}} \text{ with } k \in \{1, 2, \ldots, K\} \text{ by direct division or sequential division approaches.}$
- Mapping functions f_ks are defined on the index sets from X to Y_k as:

$$f_k: J_1 \times J_2 \times \dots \times J_N \mapsto J_{1,k} \times J_{2,k} \times \dots \times J_{N,k}, \quad (3)$$

where $J_n = \{1, 2, ..., I_n\}$, $J_{n,k} \subset \{1, 2, ..., I_{n,k}\}$ with $n \in \{1, 2, ..., N\}$.

■ f_k s satisfy $\bigcup_{k=1}^{K} J_{n,k} = J_n$ and $J_{n,k} \cap J_{n,l} = \emptyset$ when $k \neq l$ for all $k, l \in \{1, 2, ..., K\}$.

-Method

Locally Linear Higher Order Singular Value Decomposition

Locally Linear High Order Singular Value Decomposition

• HOSVD is used to obtain the low *n*-rank approximation for each \mathcal{Y}_k .

(a)

Locally Linear Higher Order Singular Value Decomposition

Locally Linear High Order Singular Value Decomposition

- HOSVD is used to obtain the low *n*-rank approximation for each \mathcal{Y}_k .
- Let $\hat{\mathcal{Y}}_k$ be a low *n*-rank approximation of \mathcal{Y}_k computed as:

$$\hat{\mathcal{Y}}_{k} = \hat{\mathcal{S}}_{k} \times_{1} \hat{\mathbf{U}}^{(1,k)} \times_{2} \hat{\mathbf{U}}^{(2,k)} \dots \times_{N} \hat{\mathbf{U}}^{(N,k)}, \qquad (4)$$

where $\hat{\mathbf{U}}^{(n,k)}$ s are the truncated projection matrices of \mathcal{Y}_k obtained by keeping the first r_n columns of $\mathbf{U}^{(n,k)}$ for $n \in \{1, 2, ..., N\}$ and $\hat{\mathcal{S}}_k$ is the core tensor

$$\hat{\mathcal{S}}_{k} = \hat{\mathcal{Y}}_{k} \times_{1} (\hat{\mathbf{U}}^{(1,k)})^{\top} \times_{2} (\hat{\mathbf{U}}^{(2,k)})^{\top} ... \times_{N} (\hat{\mathbf{U}}^{(N,k)})^{\top}.$$

Method

Locally Linear Higher Order Singular Value Decomposition

Locally Linear High Order Singular Value Decomposition

• $\hat{\mathcal{Y}}_k$ s corresponds to:

$$\hat{\mathcal{Y}}_{k} = \hat{\mathcal{X}}_{f_{k}(J_{1} \times J_{2} \times \dots \times J_{N})}, \tag{6}$$

- Method

Locally Linear Higher Order Singular Value Decomposition

Locally Linear High Order Singular Value Decomposition

$$\hat{\mathcal{Y}}_{k} = \hat{\mathcal{X}}_{f_{k}(J_{1} \times J_{2} \times \dots \times J_{N})},$$
(6)

(日)

Combining all of the subtensors ŷ_ks by using the inverse mapping functions f_k⁻¹ provides piecewise-linear approximation of X:

$$\hat{\mathcal{X}} = \sum_{k=1}^{K} \hat{\mathcal{Y}}_{k,(f_k^{-1}(J_{1,k} \times J_{2,k} \times \dots \times J_{N,k}))}.$$

Outline

1 Introduction

2 Background

3 Method

Identifying Subtensors: Direct Division & Sequential Division

Locally Linear Higher Order Singular Value Decomposition

4 Results

5 Conclusions

6 Acknowledgements

Simulated Datasets

Translating Subspaces

Simulated Datasets

- Translating Subspaces
 - Two point clouds with 100 Gaussian random variables in \mathbb{R}^{20} were generated.
 - The two subspaces in which the point clouds live are orthogonal to each other in ℝ¹⁰⁰.
 - The first point cloud is static whereas the second one is translating in time t ∈ {1, 2, ...60}.
 - A 3-mode tensor $\mathcal{X} \in \mathbb{R}^{100 \times 200 \times 60}$ is created.

Simulated Datasets

- Translating Subspaces
 - Two point clouds with 100 Gaussian random variables in \mathbb{R}^{20} were generated.
 - The two subspaces in which the point clouds live are orthogonal to each other in ℝ¹⁰⁰.
 - The first point cloud is static whereas the second one is translating in time t ∈ {1, 2, ...60}.
 - A 3-mode tensor $\mathcal{X} \in \mathbb{R}^{100 \times 200 \times 60}$ is created.

Rotating Subspaces

Simulated Datasets

- Translating Subspaces
 - Two point clouds with 100 Gaussian random variables in \mathbb{R}^{20} were generated.
 - The two subspaces in which the point clouds live are orthogonal to each other in \mathbb{R}^{100} .
 - The first point cloud is static whereas the second one is translating in time $t \in \{1, 2, ...60\}$.
 - A 3-mode tensor $\mathcal{X} \in \mathbb{R}^{100 \times 200 \times 60}$ is created.
- Rotating Subspaces
 - Two point clouds with 100 Gaussian random variables in \mathbb{R}^{20} were generated.
 - The first point cloud is static whereas the second one is rotating in time $t \in \{1, 2, ...60\}$ with the rotation matrix $\mathbf{A} = \mathbf{I}_{10 \times 10} \otimes \begin{bmatrix} \cos(\theta t) & \sin(\theta t) \\ -\sin(\theta t) & \cos(\theta t) \end{bmatrix} \text{ and } \theta = \begin{cases} \frac{\pi}{120}, & t \le 30 \\ \frac{\pi}{50}, & t > 30 \end{cases}$
 - A 3-mode tensor $\mathcal{X} \in \mathbb{R}^{100 \times 200 \times 60}$ is created.

Simulated Datasets

Figure 1: Low *n*-rank approximations of X are computed by HOSVD, LL-HOSVD(DD) and LL-HOSVD(SD) with various *n*-rank and the cluster number along each mode C = (4, 4, 4). Sample outputs for translating concerns (left) and rotating (right) subspaces: (a) original slice, (b) HOSVD, (c)LL-HOSVD(DD), (d) LL-HOSVD(SD).

Simulated Datasets

TABLE I

Average MSE for the reconstructed 3-way tensor $\mathscr{X} \in \mathbb{R}^{100 \times 200 \times 60}$ for moving subspaces by HOSVD, LL-HOSVD(DD) and LL-HOSVD(SD) approaches at varying *n*-rank over 25 trials.

	R = (3, 3, 3)	R = (5, 5, 5)	R = (7, 7, 7)	R = (9, 9, 9)
HOSVD				
	0.1131	0.1006	0.0943	0.0885
LL-HOSVD(DD)				
	0.1029	0.0926	0.0792	0.0662
LL-HOSVD(SD)				
	0.0838	0.0584	0.0407	0.0285

TABLE II

Average MSE for the reconstructed 3-way tensor $\mathscr{X} \in \mathbb{R}^{100 \times 200 \times 60}$ for rotating subspaces by HOSVD, LL-HOSVD(DD) and LL-HOSVD(SD) approaches at varying *n*-rank over 25 trials.

	R = (3, 3, 3)	R = (5, 5, 5)	R = (7, 7, 7)	R = (9, 9, 9)
HOSVD				
	0.1016	0.0896	0.0786	0.0685
LL-HOSVD(DD)				
	0.685	0.0540	0.0474	0.0432
LL-HOSVD(SD)				
	0.0493	0.0231	0.0137	0.0084
			4	

PIE Dataset

- A 3-mode tensor X ∈ ℝ^{122×160×138} is created from PIE dataset (Sim et al. 2003).
- The tensor contains 138 images from 6 different yaw angles and varying illumination conditions collected from a subject.
- Each image is converted to gray scale and downsampled to 122 × 160.
- *n*-rank($\hat{\mathcal{Y}}_k$) = (20, 25, 15) and the cluster number along each mode is chosen as C = (4, 4, 4).

A D > A B > A B > A B >

PIE Dataset

Figure 2: Frames corresponding to 3 different yaw angles obtained from approximated low *n*-rank tensor:
 (a) original image, (b) HOSVD, MSE = 439.0140, (c) LL-HOSVD(DD), MSE = 140.6469, (d) LL-HOSVD(SD), MSE = 378.3899

(a)

Outline

2 Background

3 Method

Identifying Subtensors: Direct Division & Sequential Division

Locally Linear Higher Order Singular Value Decomposition

4 Results

5 Conclusions

6 Acknowledgements

Conclusions & Future Work

Conclusions:

Conclusions & Future Work

Conclusions:

We introduced a new low-rank tensor approximation technique to learn the underlying nonlinear structure.

Conclusions & Future Work

Conclusions:

- We introduced a new low-rank tensor approximation technique to learn the underlying nonlinear structure.
- We proposed two approaches to decompose a tensor into its subtensors.

Conclusions & Future Work

Conclusions:

- We introduced a new low-rank tensor approximation technique to learn the underlying nonlinear structure.
- We proposed two approaches to decompose a tensor into its subtensors.
- Proposed approach provides better approximation than HOSVD by fitting piece-wise linear low-rank model to local non-linearities.

Conclusions & Future Work

Conclusions:

- We introduced a new low-rank tensor approximation technique to learn the underlying nonlinear structure.
- We proposed two approaches to decompose a tensor into its subtensors.
- Proposed approach provides better approximation than HOSVD by fitting piece-wise linear low-rank model to local non-linearities.

Conclusions & Future Work

Future work:

Conclusions & Future Work

Future work:

Selection of parameters in the algorithm: the number of clusters and the appropriate rank.

Conclusions & Future Work

Future work:

- Selection of parameters in the algorithm: the number of clusters and the appropriate rank.
- Adapting the method to dynamic tensors for identifying structural changes to the tensor in time.

Conclusions & Future Work

Future work:

- Selection of parameters in the algorithm: the number of clusters and the appropriate rank.
- Adapting the method to dynamic tensors for identifying structural changes to the tensor in time.
- Combining the algorithm with the multiscale structure of GMRA to obtain a multi-resolution tree structure for high order datasets.

Conclusions & Future Work

Future work:

- Selection of parameters in the algorithm: the number of clusters and the appropriate rank.
- Adapting the method to dynamic tensors for identifying structural changes to the tensor in time.
- Combining the algorithm with the multiscale structure of GMRA to obtain a multi-resolution tree structure for high order datasets.
- Learning multiresolution tree structure provides better compression rate than HOSVD.

Acknowledgements

Outline

- 1 Introduction
- 2 Background
- 3 Method
 - Identifying Subtensors: Direct Division & Sequential Division
 - Locally Linear Higher Order Singular Value Decomposition
- 4 Results
- 5 Conclusions
- 6 Acknowledgements

Acknowledgements

Acknowledgements

This work was in part supported by NSF CCF-1422262, NSF CCF-1218377, NSF DMS-1416752 and NSA H98230-13-1-0275.

