
Locally Linear Low-rank Tensor Approximation

Locally Linear Low-rank Tensor
Approximation

Alp Ozdemir1, Mark A. Iwen1,2 and Selin Aviyente1

1 Department of Electrical and Computer Engineering, Michigan State University
2 Deparment of the Mathematics, Michigan State University

December 15, 2015



Locally Linear Low-rank Tensor Approximation

Introduction

Outline

1 Introduction

2 Background

3 Method
Identifying Subtensors: Direct Division & Sequential
Division
Locally Linear Higher Order Singular Value
Decomposition

4 Results

5 Conclusions

6 Acknowledgements



Locally Linear Low-rank Tensor Approximation

Introduction

Introduction

High dimensional data sets in RD lie in a lower
d-dimensional manifold, or subspace, with d � D.

Linear subspace estimation methods: PCA, SVD.
Manifold Learning Methods:

Multidimensional Scaling (MDS): Embed the data into a
graph to construct d-dimensional manifold (Tenenbaum et
al. 2000).
Locally linear embedding (LLE)(Roweis and Saul 2000).
Geometric Multi-resolution Analysis (GMRA): Data
dependent multi-scale dictionaries (Allard et al. 2012).

However, these approaches are not directly applicable to
high order data, e.g. hyperspectral imaging, social and
biological networks.
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Linear Low-Rank Structure Learning:

Higher order singular value decomposition (HOSVD)
Parallel Factor Analysis (PARAFAC)

Manifold Learning Methods for Tensors:
He et al.(2005) extended locality preserving projections to
second order tensors.
Dai and Yeung (2006) extended following embedding
methods to tensors:

Local discriminant embedding
Neighborhood preserving embedding
Locality preserving projection

These methods are mostly limited to learning the optimal
linear transformation for supervised classification of
high-order data.
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method to exploit locally linear low-rank structure of
high-order data.

Two step approach:
Decompose the tensor into subtensors.
Apply higher order singular value decomposition (HOSVD)
to these subtensors.
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Tensor Algebra

A multidimensional array with N modes X ∈ RI1×I2×...×IN is
called a tensor, where xi1,i2,..iN denotes the (i1, i2, ..iN)th

element of the tensor X .

Vectors obtained by fixing all indices of the tensor except
the one that corresponds to nth mode are called mode-n
fibers.
Tensor matricization: The mode-n matricization of tensor Y
is denoted as Y(n) and is obtained by arranging mode-n
fibers to be the columns of the resulting matrix.
Mode-n product: Y = X ×n U yields Y(n) = UX(n).
Tensor n-rank of X is the collection of ranks of mode
matrices X(n):
n-rank(X ) =

(
rank(X(1)), rank(X(2)), ..., rank(X(N))

)
.
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Higher-Order Singular Value Decomposition (HOSVD)

Any tensor X ∈ RI1×I2×...×IN can be decomposed as:

X = S ×1 U(1) ×2 U(2)...×N U(N), (1)

where U(n) ∈ RIn×Ins are the left singular vectors of X(n) and
S ∈ RI1×I2×...×IN is the core tensor computed as:

S = X ×1 (U(1))> ×2 (U(2))>...×N (U(N))>. (2)
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Identifying Subtensors: Direct Division & Sequential Division

Identifying Subtensors

Direct Division:

Unfold tensor X ∈ RI1×I2×...×IN across each mode to obtain
Xn ∈ RIn×

∏
j 6=n Ij whose columns are the mode-n fibers of X .

For each mode, the mode-n fibers are partitioned into cn
non-overlapping clusters through METIS (Karypis and
Kumar 1998).
Cartesian product of the fiber labels coming from different
modes yields K =

∏N
i=1 cn subtensors Yk .
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Identifying Subtensors
Sequential Division:

Mode-1 fibers of X are grouped into c1 clusters to obtain
c1 subtensors.
Mode-2 fibers of each of the newly created subtensors are
clustered into c2 clusters separately which yields c1 × c2
subtensors.
This procedure is applied N times by clustering the fibers
of different modes at each step and K =

∏N
i=1 cn

subtensors are obtained.
Choosing different ordering of the modes yields N!
different possible decompositions, Yk .
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Locally Linear High Order Singular Value
Decomposition

Goal: Low n-rank approximation to subtensors of an Nth order
tensor X ∈ RI1×I2×...×IN to better capture local nonlinearities.

Decompose tensor X into K subtensors
Yk ∈ RI1,k×I2,k×...×IN,k with k ∈ {1, 2, ... K} by direct division
or sequential division approaches.
Mapping functions fks are defined on the index sets from X
to Yk as:

fk : J1 × J2 × ... × JN 7→ J1,k × J2,k × ... × JN,k , (3)

where Jn = {1, 2, ..., In}, Jn,k ⊂
{

1, 2, ..., In,k
}

with
n ∈ {1, 2, ... N}.
fks satisfy ∪K

k=1Jn,k = Jn and Jn,k ∩ Jn,l = ∅ when k 6= l for
all k , l ∈ {1, 2, ..., K}.
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Locally Linear High Order Singular Value
Decomposition

HOSVD is used to obtain the low n-rank approximation for
each Yk .

Let Ŷk be a low n-rank approximation of Yk computed as:

Ŷk = Ŝk ×1 Û(1,k) ×2 Û(2,k)...×N Û(N,k), (4)

where Û(n,k)s are the truncated projection matrices of Yk
obtained by keeping the first rn columns of U(n,k) for
n ∈ {1, 2, ... N} and Ŝk is the core tensor

Ŝk = Ŷk ×1 (Û(1,k))> ×2 (Û(2,k))>...×N (Û(N,k))>. (5)
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Ŷks corresponds to:

Ŷk = X̂fk (J1×J2× ... ×JN), (6)

Combining all of the subtensors Ŷks by using the inverse
mapping functions f−1

k provides piecewise-linear
approximation of X :

X̂ =
K∑

k=1

Ŷk ,(f−1
k (J1,k×J2,k× ... ×JN,k ))

. (7)
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Simulated Datasets
Translating Subspaces

Two point clouds with 100 Gaussian random variables in
R20 were generated.
The two subspaces in which the point clouds live are
orthogonal to each other in R100.
The first point cloud is static whereas the second one is
translating in time t ∈ {1, 2, ...60}.
A 3-mode tensor X ∈ R100×200×60 is created.

Rotating Subspaces
Two point clouds with 100 Gaussian random variables in
R20 were generated.
The first point cloud is static whereas the second one is
rotating in time t ∈ {1, 2, ...60} with the rotation matrix

A = I10×10⊗
[

cos(θt) sin(θt)
−sin(θt) cos(θt)

]
and θ =

{
π

120 , t ≤ 30
π
60 , t > 30 .

A 3-mode tensor X ∈ R100×200×60 is created.
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Figure 1: Low n-rank approximations of X are computed by HOSVD, LL-HOSVD(DD) and LL-HOSVD(SD)
with various n-rank and the cluster number along each mode C = (4, 4, 4). Sample outputs for translating
(left) and rotating (right) subspaces: (a) original slice, (b) HOSVD, (c)LL-HOSVD(DD), (d) LL-HOSVD(SD).
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A 3-mode tensor X ∈ R122×160×138 is created from PIE
dataset (Sim et al. 2003).
The tensor contains 138 images from 6 different yaw
angles and varying illumination conditions collected from a
subject.
Each image is converted to gray scale and downsampled
to 122× 160.
n-rank(Ŷk ) = (20,25,15) and the cluster number along
each mode is chosen as C = (4,4,4).
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Figure 2: Frames corresponding to 3 different yaw angles obtained from approximated low n-rank tensor:
(a) original image, (b) HOSVD, MSE = 439.0140, (c) LL-HOSVD(DD), MSE = 140.6469, (d)
LL-HOSVD(SD), MSE = 378.3899
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We introduced a new low-rank tensor approximation
technique to learn the underlying nonlinear structure.
We proposed two approaches to decompose a tensor into
its subtensors.
Proposed approach provides better approximation than
HOSVD by fitting piece-wise linear low-rank model to local
non-linearities.
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clusters and the appropriate rank.
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structural changes to the tensor in time.
Combining the algorithm with the multiscale structure of
GMRA to obtain a multi-resolution tree structure for high
order datasets.
Learning multiresolution tree structure provides better
compression rate than HOSVD.
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