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Overview

» Goal: Under-determined convolutive blind source separation
» Objective: Improve the accuracy of mixing matrix estimation
» Existing algorithms: Directional clustering and sparse coding

» Challenges: Complex-valued mixing matrix and non-convexity
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Blind separation of convolutive
mixtures

e fMRI signals
e Multi-channel recording of real speeches
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Complex-valued mixing model

e Linear and noiseless

N
x|k| = Aslk| = >, a;s; |k
where x[k] € CM*1 s the data we have

s[k] € CNV*1 isthe latent sources

and a; isjth latent filters/atom/factor/etc.

e M = N: determined mixing process
e M < N: under-determined mixing process
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Assumptions

 The sources are sufficiently sparse so that observed data Is

directional.

x|k] = A

Sl[k] > Ej

S1 [k]

~ a1 |k] . *

 Infinite unit vectors having the same direction in complex vector

space

D?*(x[k],a;) =1 — cos?* Oy (x[k],a;) = 1 —
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Assumptions (cont.)

e The sources are zero-mean and unit-variance

f(s)=c*exp(-ls|') 4 f(s)=c*exp(-Is|')

—————————————

Fig.: Mixtures of Laplace sources Fig.: Whitened mixtures

x[k] = As[A] xyv (k] = Qx[k] = QAslk
Co=E(sils My =1 = E{x.[xI[} = QAATQ" =T

« The mixing matrix for pre-whitened data is semi-unitary/unitary
AAF =1 = Y llajll; cos? O (x[K], a;) = 1

« Observation: in under-determined case, minimizing the sparsity
penalty of cosine similary is suboptimal for directional data.
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Issues related to existing methods

e Sparse filtering uses an unsuitable sparsity enforcer for directional

data. ~ ~
wing [, 7],
1 2

— ming E{ DA ||aj||2cos9H(x[kj,aj)}

« K-hyperlines works best for perfectly directional data
min 5 E{ min DQ(X[k],aj)}
i

« “Soft” extensions of K-hyperlines are computationally expensive

« Existing methods do not exploit the semi-unitary property of the
mixing matrix.
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Proposed algorithm

e Minimize the expected power mean of the phase-invariant cosine
distance subject to semi-unitary constraint

min 5 J(A; 1), s.t. AAT =T,

where

J(A; r):E{{% > (D2l aj))T/r}, r e (o, 1).

e Why the power mean?
— Numerically stable:  #(y1, 92, ..., yn; 7) = ymin[% Zj 1 Y5/ Yimin
— Schur-concave (which acts as a sparsity enforcer)

— Smooth surrogate of the minimum function (sparsity enforcer for
approximately 1-sparse sources)

i|1/r
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Proposed algorithm (cont.)

e Semi-unitary constrained non-convex optimization problem

e Reparametrize semi-unitary constrained problems into unconstrained
ones in Euclidean space

min x f(A), st. AAH =1,
= ming f(A)s.t. A= (BB¥)"1/2B

e Unconstrained problem w.r.t. B which can be solved by off-the-shelf
tools, e.g., L-BFGS, NAG, SGD, momentum, etc.

« Ais the nearest semi-unitary matrix of B (many-to-one mapping)
— B must be full row rank
— A is always feasible
— Same cost for all matrices that are mapped to the same A
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Proposed algorithm (cont.)

e Backpropagation through nearest semi-unitary projector is practical.

Algorithm 1 Gradient of in-line row-wise decoupling scheme
1: U, ¥, V+ SVD(B)
2: o <+ diag(X)
3 A+ UVH
4: Find f and V3, f for a batch or minibatch
5: C+ —(X7'UH(V4./)V) o (10T + o17)
6: Vp-f + U(CH + C)XVH 4+ UE UV, f

e One economy-size SVD per batch or minibatch.

e May be useful for other signal processing applications or machine
learning applications as well.
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Proposed algorithm (cont.)

e Comparison to to optimization on Stiefel manifold

Fig.: Proposed reparameterization.

Fig.: Optimization on Stiefel manifold.
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Simulation results

e Performance criteria
— Mixing-error-ratio (MER)

MER = (20/N) 2, log ( [Jag]| / [lag™]| ).

— Signal-distortion-ratio (SDR) and signal-interference-ratio (SIR):

A t inter arti
Sij (t) = Sij (t) + 63;)& (t) + €,th f(f) + Gijt f(t)

2
i Z'Lt Sij(t) .
i’t(ejga (t)—l—eli?-terf(t)+€?;tlf(t))2

SDR; = 10log >

> 81 (0 (€557 ()
Zz t( 1nterf(t))2

SIR; = 101log
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MER (dB)

Simulation results (cont.)
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Fig. 1: Average MER in estimation of 2 x 4 mixing matrix w.r.t. : a) Sparseness. b) Sample size. ¢) Number of sources

e Synthesized data

— Better estimation can be achieved.
— Sparse filtering failed to recover the mixing matrix in under-determined case
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Simulation results (cont.)

e Blind separations of under-determined live recording speeches
5:(t) ]
® 50 .
0 g 2O s = S3(t)
922_(_t)i:~.—-—-'-'. —@
.912\"J D ' Permutation N .
s3(1) 92_3@.)-;'_1 P e. s STFT 9 alignment J ISTFT - ® $(1)
e . % (0 amaskig | ()
Table 1: Output SDR and SIR in dB for 2mic_4src_Scm sub-
set of SISEC dev1 dataset
RT60 130ms 250ms
Source 4 males |4 females | 4 males |4 females
Perf. metric|]SDR| SIR |SDR| SIR |SDR| SIR |SDR| SIR
PM 4.55|8.273.80(6.38|3.67|6.06 | 3.57 |5.36
[22] 4.1 16.3814.476.48|3.55(5.07| 3.5 |4.85
[9] 331 - (392 - (262 - [349| -
Input |-4.81|-4.60|-4.76|-4.68(-4.79|-4.64|-4.83|-4.71
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Simulation results (cont.)

e |Improvement in SIR is 14% (improvement in SDR is 2%) on SISEC dev1
dataset compared to the state of the art by Cho et. al.

e Much faster (up to 1 minute vs. up to 1 hours).

Male sources Est src2
2mic-4src, 130ms, 5cm
N & > \-. N \\ | \-.. ‘ \-.

Proposed method
Cho et. al.
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Conclusions

e Better estimation of complex-valued mixing matrix can be achieved
by minimizing the expected power-mean of phase-invariant cosine
distance subject to semi-unitary constraint.

e Semi-unitary constrained problems can be efficiently reparametrized
into unconstrained problems in Euclidean space.
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