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I don’t have to convince you EV are coming…

https://i.ytimg.com/vi/tj6B489H_zg/maxresdefault.jpg



We assume EV charging will look like this…

http://o.aolcdn.com/hss/storage/midas/f31dd15c97d6237dd816c5d186980528/200403157/DP6V4737.jpg



But the future of EV charging in cities looks like this…



Capital 
Costs
Prohibitively 
Expensive



The Need for 
Adaptive 
Charging
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Physical Charging Testbed



What good is a real 
testbed?
• Working with real systems allow us to 

understand their limitations.
• Without a proper understanding of 

these limitations our algorithms may 
look great on paper but be practically 
useless. 



The Adaptive Charging 
Network

Main Switch
Panel

Garage Loads  
(Lighting, Fans,
Elevators, etc.) 

EV Switch Panel

Caltech Substation

480 V 
800 A 

3phase Transformer 
150 kVA, 480V/208V 

208 V 
420 A 

Utility Company

50 kW 
400 VDC t1 

t0 

x19...
• 54 controllable level-2 EVSEs
• 50 kW DC Fast Charger.
• Oversubscription of transformers, cables 

and breakers. 
• Demonstration environment for demand 

response, pricing schemes, and 
renewables integration. 



charging stations

54+



kW of Capacity

150



MWh of energy delivered

585



million mile equivalent

1.8



tons of CO#$% avoided

610



What can we do 
with this system?



Data Collection



Charging Sessions
since April 2018

11,000



Charging 
Session 

Statistics

Average Number of Sessions

Average Length of Sessions

Average Total Energy Delivered

Average Energy Delivered per Session

Maximum Concurrent Sessions



Arrival
Statistics



Session per 
Day



Simultaneous 
Sessions



Online Scheduling



Scheduling Problem
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SCH

No discharging. Maximum charging rate.
Relaxation of allowable rate set.

Infrastructure constraints.

Total energy delivered must be less than 
energy requested.

Maximizing profit. 
Charging quickly.
Maximizing renewable energy use. 
Following demand response signals.

No charging after departure.



Unbalanced Three-Phase Constraints

Garage 
Loads 

DC Fast
Charger 
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Unbalanced Three-Phase Constraints

• We assume that we know/can measure the voltage phase angles at the EVSEs.

• Since EVSEs can be modeled as constant current loads with unity power factor, we 
thus know the phase angles of their currents.

• Since the magnitude of the current phasor is the only variable, these constraints are 
second-order cone constraints and the optimization problem is tractable.

|I3,a|2 = |Ievseab � Ievseca |2

= (|Ievseab | cos�ab � |Ievseca | cos�ca)
2 + (|Ievseab | sin�ab � |Ievseca | sin�ca)

2

 R2
3,a



Unbalanced Three-Phase Constraints

• We assume that we know/can measure the voltage phase angles at the EVSEs.

• Since EVSEs can be modeled as constant current loads with unity power factor, we 
thus know the phase angles of their currents.

• Since the magnitude of the current phasor is the only variable, these constraints are 
second-order cone constraints and the optimization problem is tractable.

|I3,a| = |Ievseab � Ievseca |
 |Ievseab |+ |Ievseca |
 R3,a



Phase Aware 
Constraints
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Imperfect Actuation

• Control is done via a pilot signal.
• Pilot signal is only an upper bound on 

charging current.
• Battery management system is free to 

charge at any rate lower than the pilot.
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Model Predictive Control

• We use model predictive 
control to account for 
deviations. 

• Schedule is recomputed 
periodically or when changes 
occur in the system.

no

recompute? 

update energy
remaining and

remaining duration

collect active  
charging sessions 

update pilot signals
from most  

recent schedule 

compute new optimal
schedule using SCH 

yes



Simple 
Battery 
Model
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Robustness
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Results



Profit 
Maximization



Conclusions
• We should consider the unique challenges of large-

scale charging infrastructure. 
• Adaptive scheduling can significantly reduce the 

capital and operating costs of large-scale charging 
systems.

• Experience with real systems can inform how we 
design practical algorithms. 

• Real time data from our testbed can be found at 
caltech.powerflex.com.



Future Work
• Demonstrating how large-scale EV charging can be 

used to flatten the “duck curve”
• Demonstrating the viability of large-scale EV 

charging in demand response markets
• Analyzing user behavior to design predictive 

scheduling algorithms



Releasing 
Dataset and Simulator

email zlee@caltech.edu
to be notified of the release



Questions


