Consensus Optimization for Distributed Registration

Rajat Sanyal ${ }^{\dagger}$ and Kunal N. Chaudhury*

${ }^{\dagger}$ IGH-S\&O, KPMG Advisory Services Private Limited, Gurugram, India
*Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India

GlobalSIP-2018

Registration Problem

Figure: Registration problem for three point clouds.

- Given: Local coordinates $\mathbf{x}_{k, i}$, point correspondence.
- Unknowns: Global coordinates $\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}$, rigid transformations $\left(\mathbf{O}_{1}, \mathbf{t}_{1}\right), \ldots,\left(\mathbf{O}_{M}, \mathbf{t}_{M}\right)$ where $\mathbf{O}_{i} \in \mathbb{O}(d), \mathbf{t} \in \mathbb{R}^{d}$, and $\mathbb{O}(d)=\left\{\mathbf{O} \in \mathbb{R}^{d \times d}: \mathbf{O}^{\top} \mathbf{O}=\mathbf{I}_{d}\right\}$.
- Noiseless scenario: $\mathbf{z}_{k}=\mathbf{O}_{i} \mathbf{x}_{k, i}+\mathbf{t}_{i}$.

Applications

(c) Sensor network localization.

Sensor Network Localization (SNL)

- Available information: Inter-sensor distances.
- Aim: Estimate the original location of the sensors, or up to some rigid transformation (rotation, reflection, translation) of the original locations.

Divide-and-Conquer Based SNL Algorithm

Localization of each subnetwork

Least Square Formulation

$$
\begin{equation*}
\min _{\mathbf{z}_{k}, \mathbf{t}_{i} \in \mathbb{R}^{n}, \mathbf{O}_{i} \in \mathbb{O}(d)} \sum_{i=1}^{M} \sum_{k \in \mathcal{P}_{i}}\left\|\mathbf{z}_{k}-\left(\mathbf{O}_{i} \mathbf{x}_{k, i}+\mathbf{t}_{i}\right)\right\|^{2} \tag{1}
\end{equation*}
$$

- Non-convex problem.
- Convex relaxation proposed by Chaudhury et al., SIOPT 2015 ${ }^{1}$:
- Fix \mathbf{O}_{i} 's, jointly optimizes over \mathbf{x}_{k} and \mathbf{t}_{i}.
- Leads to the following problem

$$
\begin{array}{ll}
\min _{\mathbf{G} \in \mathbb{S}_{+}^{n}} & \operatorname{Tr}(\mathbf{C G}) \tag{2}\\
\text { s.t. } & {[\mathbf{G}]_{i i}=\mathbf{I}_{d}, \forall i \in[1: M], \operatorname{rank}(\mathbf{G})=d}
\end{array}
$$

- Drop the rank and solve the semidefinite programming.
${ }^{1}$ K. N. Chaudhury, Y. Khoo, and A. Singer, "Global registration of multiple point clouds using semidefinite programming," SIAM Journal on Optimization, vol. 25, no. 1, pp. 468-501, 2015.

What is the issue then?

- Computing C .

$$
\begin{equation*}
\mathbf{C}=\mathbf{D}-\mathbf{B L}^{\dagger} \mathbf{B}^{\top} \tag{3}
\end{equation*}
$$

\mathbf{L} is a symmetric matrix of size $(N+M)$.

- Large number of point clouds.
- Rank of \mathbf{G}^{\star} may not be d.

Repose the Registration Problem

- The least-square formulation of the registration problem:

$$
\begin{equation*}
\min _{\mathbf{z}_{k}, \mathbf{t}_{i} \in \mathbb{R}^{n}, \mathbf{O}_{i} \in \mathbb{O}(d)} \sum_{i=1}^{M} \sum_{k \in \mathcal{P}_{i}}\left\|\mathbf{z}_{k}-\left(\mathbf{O}_{i} \mathbf{x}_{k, i}+\mathbf{t}_{i}\right)\right\|^{2} \tag{4}
\end{equation*}
$$

- Reformulate the registration problem:

$$
\begin{array}{|cc|}
\min _{\mathbf{y}_{k, i}, \mathbf{z}_{k}, \mathbf{t}_{i} \in \mathbb{R}^{n}, \mathbf{O}_{i} \in \mathbb{O}(d)} & \sum_{i=1}^{M} \sum_{k \in \mathcal{P}_{i}}\left\|\mathbf{y}_{k, i}-\left(\mathbf{O}_{i} \mathbf{x}_{k, i}+\mathbf{t}_{i}\right)\right\|^{2} \tag{5}\\
\text { s.t. } & \mathbf{y}_{k, i}=\mathbf{z}_{k}, \forall k \in \mathcal{P}_{i}, i \in[1: M] .
\end{array}
$$

Membership Graph

An example of a point set configuration, and the correspondence graph.

$$
\begin{array}{cl}
\min _{\mathbf{y}_{k, i}, \mathbf{z}_{k}, \mathbf{t}_{i} \in \mathbb{R}^{n}, \mathbf{O}_{i} \in \mathbb{O}(d)} & \sum_{i=1}^{M} \sum_{k \in \mathcal{P}_{i}}\left\|\mathbf{y}_{k, i}-\left(\mathbf{O}_{i} \mathbf{x}_{k, i}+\mathbf{t}_{i}\right)\right\|^{2} \tag{6}\\
\text { s.t. } & \mathbf{y}_{k, i}=\mathbf{z}_{k}, \quad \forall k \in \mathcal{P}_{i}, \quad i \in[1: M] .
\end{array}
$$

Augmented Lagrangian and the ADMM Solver

- Problem:

$$
\begin{array}{|cl|}
\min _{\mathbf{y}_{k, i}, \mathbf{z}_{k}, \mathbf{t}_{i} \in \mathbb{R}^{n}, \mathbf{O}_{i} \in \mathbb{O}(d)} & \sum_{i=1}^{M} \sum_{k \in \mathcal{P}_{i}}\left\|\mathbf{y}_{k, i}-\left(\mathbf{O}_{i} \mathbf{x}_{k, i}+\mathbf{t}_{i}\right)\right\|^{2} \tag{7}\\
\text { s.t. } & \mathbf{y}_{k, i}=\mathbf{z}_{k}, \forall k \in \mathcal{P}_{i}, \quad i \in[1: M] .
\end{array}
$$

- Augmented Lagrangian:

$$
\begin{equation*}
\mathcal{L}_{\rho}=\sum_{k \sim i}\left(\left\|\mathbf{y}_{k, i}-\left(\mathbf{O}_{i} \mathbf{x}_{k, i}+\mathbf{t}_{i}\right)\right\|^{2}+\lambda_{k, i}^{\top}\left(\mathbf{y}_{k, i}-\mathbf{z}_{k}\right)+\frac{\rho}{2}\left\|\mathbf{y}_{k, i}-\mathbf{z}_{k}\right\|^{2}\right) . \tag{8}
\end{equation*}
$$

- Alternating direction methods for multipliers (ADMM) solver:

$$
\begin{align*}
& \left(\mathbf{Y}^{(t)}, \mathbf{O}^{(t)}, \mathbf{T}^{(t)}\right)=\underset{\mathbf{Y}, \mathbf{O}, \mathbf{T}}{\operatorname{argmin}} \mathcal{L}_{\rho}\left(\mathbf{Y}, \mathbf{O}, \mathbf{T}, \mathbf{Z}^{(t-1)}, \boldsymbol{\Lambda}^{(t-1)}\right), \\
& \mathbf{Z}^{(t)}=\underset{\mathbf{Z}}{\operatorname{argmin}} \mathcal{L}_{\rho}\left(\mathbf{Y}^{(t)}, \mathbf{O}^{(t)}, \mathbf{T}^{(t)}, \mathbf{Z}, \boldsymbol{\Lambda}^{(t-1)}\right), \\
& \boldsymbol{\lambda}_{k, i}^{(t)}=\boldsymbol{\lambda}_{k, i}^{(t-1)}+\rho\left(\mathbf{y}_{k, i}^{(t)}-\mathbf{z}_{k}^{(t)}\right), \quad(k \sim i) . \tag{9}
\end{align*}
$$

Update $\mathbf{Y}, \mathbf{O}, \mathbf{T}$

$$
\begin{equation*}
\min _{\mathbf{y}_{k, i}, \mathbf{t}_{i}, \mathbf{O}_{i}} \sum_{i=1}^{M} \sum_{k \in \mathcal{P}_{i}}\left(\left\|\mathbf{y}_{k, i}-\left(\mathbf{O}_{i} \mathbf{x}_{k, i}+\mathbf{t}_{i}\right)\right\|^{2}+\frac{\rho}{2}\left\|\mathbf{y}_{k, i}-\left(\mathbf{z}_{k}-\lambda_{k, i} / \rho\right)\right\|^{2}\right) \tag{10}
\end{equation*}
$$

- For each point cloud:

$$
\begin{equation*}
\min _{\mathbf{y}_{k, i}, \mathbf{t}_{i}, \mathbf{O}_{i}} \sum_{k \in \mathcal{P}_{i}}\left(\left\|\mathbf{y}_{k, i}-\left(\mathbf{O}_{i} \mathbf{x}_{k, i}+\mathbf{t}_{i}\right)\right\|^{2}+\frac{\rho}{2}\left\|\mathbf{y}_{k, i}-\left(\mathbf{z}_{k}-\lambda_{k, i} / \rho\right)\right\|^{2}\right) \tag{11}
\end{equation*}
$$

- First, minimizes over $\boldsymbol{y}_{k, i}$ and \mathbf{t}_{i}.
- Finally, solve the following:

$$
\begin{equation*}
\max _{\mathbf{O}_{i} \in \mathbb{O}(d)} \operatorname{Tr}\left(\mathbf{C}_{i} \mathbf{O}_{i}\right) \tag{12}
\end{equation*}
$$

Update \mathbf{Z}

$$
\begin{equation*}
\min _{\mathbf{z}_{k}} \sum_{k \sim i}\left\|\mathbf{z}_{k}-\left(\mathbf{y}_{k, i}^{(t)}+\rho^{-1} \boldsymbol{\lambda}_{k, i}^{(t-1)}\right)\right\|^{2} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{z}_{k}^{(t)}=\frac{1}{\left|\mathcal{N}_{k}\right|} \sum_{i \in \mathcal{N}_{k}}\left(\mathbf{y}_{k, i}^{(t)}+\rho^{-1} \boldsymbol{\lambda}_{k, i}^{(t-1)}\right) \tag{14}
\end{equation*}
$$

Summary

- Computation is distributed over each point-cloud.
- Main computation per processor is an SVD: $\mathcal{O}\left(d^{3}\right)$.
- Solve the non-convex problem directly.

Performance Metric

- Performance metric: Average Normalized Error ${ }^{2}$ (ANE).

$$
\text { ANE }=\left\{\frac{\sum_{i=1}^{N}\left\|\hat{\mathbf{x}}_{i}-\overline{\mathbf{x}}_{i}\right\|^{2}}{\sum_{i=1}^{N}\left\|\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}_{c}\right\|^{2}}\right\}^{1 / 2},
$$

where,
$\hat{\mathbf{x}}_{i}$: estimated sensor position after the alignment,
\mathbf{x}_{i} : actual position of the sensor,
$\overline{\mathbf{x}}_{c}$: the centroid of the original sensor positions

$$
\overline{\mathbf{x}}_{c}=\frac{1}{N} \sum_{i=1}^{N} \overline{\mathbf{x}}_{i}
$$

[^0]
(d) $\eta=0, \mathrm{ANE}=9.5 \mathrm{e}-13$.

(e) $\eta=0.006, \mathrm{ANE}=9.1 \mathrm{e}-3$.

Localization of the US cities dataset consisting of 1101 points. The sensing radius used for both (a) and (b) is $r=0.06$, which is about 9% of the diameter of the dataset (0.704). The original and estimated locations are marked using blue circles and red stars.

Localization of the spiral dataset consisting of 2259. The sensing radius used for both (a) and (b) is $r=1$, which is about 9% of the diameter of the dataset (11.2). The original and estimated locations are marked using blue circles and red stars.

${ }^{(j)}$ Proposed ($\mathrm{ANE}=2.6 \mathrm{e}-3$).

(k) SNLSDP (ANE $=3 \mathrm{e}-2$)

Localization of PACM dataset consisting of 495 points. The top and bottom rows correspond to $\eta=0$ and $\eta=0.03$. The original and estimated locations are marked using blue circles and red stars.

Questions？

[^0]: ${ }^{2}$ M. Cucuringu, Y. Lipman, and A. Singer, "Sensor network localization by eigenvector synchronization over the Euclidean group," ACM Trans. on Sensor Networks, vol. 8, no. 3, pp. 19-42, 2012.

