TOMOGRAPHIC RECONSTRUCTION OF ATMOSPHERIC DENSITY WITH MUMFORD-SHAH FUNCTIONALS

David Ren, Lara Waldrop, Farzad Kamalabadi

Department of Electrical and Computer Engineering, College of Engineering, University of Illinois at Urbana-Champaign

Introduction
 Background

Space-based remote sensing of solar radiation scattered by hydrogen (H) atoms is often used to infer the density of Earth's uppermost atmosphere based on an assumed we present a alternative density distribution. Here, parametric estimation that is based instead on tomographic inversion of satellite observations of scattered ultraviolet emission at 121.6 nm .

Forward Model

Atmostpheric H emission intensity y, as measured from planetocentric position r along a line-of-sight (LOS) in the direction $\widehat{\boldsymbol{n}}$, is related to the unknown H density ρ in terms of distance $l \equiv\left|\boldsymbol{r}^{\prime}-\boldsymbol{r}\right|$ (measured in R_{E}, radius of earth) along LOS as follows:

$$
\mathrm{y}(\mathbf{r}, \widehat{\boldsymbol{n}}) \propto \int_{0}^{l_{\infty}(\hat{\boldsymbol{n}})} \rho\left(\boldsymbol{r}^{\prime}\right) d l
$$

Utilizing standard basis functions in polar coordinates, the 2-D plane is discretized into polar rectangles, and assuming the density distribution is constant within each polar rectangle, the following can be derived:
$\mathbf{y}=\mathbf{L x}+\mathbf{w}$
$\mathbf{y}, \boldsymbol{w} \in \mathbb{R}^{I}$, I observed emission intensity and Poisson distributed additive noise
$\mathbf{x} \in \mathbb{R}^{J}, H$ density in J polar rectangle
$\mathbf{L} \in \mathbb{R}^{I \times J}$, observation matrix constructed from discretizing (1). \mathbf{L} is a function of $\widehat{\boldsymbol{n}}, \mathbf{r}$

Aim
Due to the nature of limited data and errors in measurement, the inverse problem is ill-conditioned. Previous techniques include:

- Tikhonov: $J(\mathbf{x}, \mathbf{s})=\underbrace{\| \boldsymbol{L}-\boldsymbol{L}| |^{2}}_{\text {Data Fidelity }}+\underbrace{\left.\alpha_{1}^{2}| | \boldsymbol{D} x\right|^{2}}_{\text {Regularizer }}$

Linear optimization problem
Over smooth solution, edges not preserved
Total Variation: $J(\mathbf{x}, \mathbf{s})=\underbrace{\left||\boldsymbol{L} x|^{2}\right.}_{\text {Data Fidelity }}+\underbrace{\alpha_{1}^{2}|\boldsymbol{D} x|^{2}}_{\text {Regularize }}$ Well known for edge preservation Edges are not limited, can appear randomly Cost function is non-differentiable

Method

Mumford-Shah Functionals

$$
J(\boldsymbol{u})=\int_{\Omega}(\boldsymbol{u}-\boldsymbol{f})^{2} d \boldsymbol{A}+\alpha_{1}^{2} \int_{\Omega \backslash \Gamma}|\nabla \boldsymbol{u}|^{2} d \boldsymbol{A}+\alpha_{2}^{2}|\Gamma|^{2}
$$

$\Omega, \Gamma, \boldsymbol{u}, \boldsymbol{f}$: Image domain, boundary, and fields
Originally used for Image Segmentation

- Produces piece-wise smooth images

The functional is non-differentiable

Ambrosio-Tortorelli Approximation

$$
J(\mathbf{x}, \mathbf{s})=\underbrace{\|\boldsymbol{L}-\boldsymbol{L} \boldsymbol{x}\|^{2}}_{\text {Data Fidelity }}+\underbrace{\alpha_{1}^{2}| | \boldsymbol{D} x\left\|_{W_{s}}^{2}+\alpha_{2}^{2}| | \boldsymbol{D s}\right\|_{2}^{2}+\alpha_{3}^{2}| | \boldsymbol{s} \|_{2}^{2}}_{\text {Regularizer }}
$$

D: Discrete differencing matrix

- s : Edge field corresponding to each "pixel" W_{s} : Weighting matrix according to edge field s Allowed for Maximum-a-posteriori estimation interpretation
Non-linear optimization problem due to $\boldsymbol{W}_{\boldsymbol{s}}$

Optimization Steps

```
Step 1: Initialization
-Initial guess }\mp@subsup{x}{0}{},\mp@subsup{s}{0}{
- Compute W}\mp@subsup{\boldsymbol{W}}{\boldsymbol{s}}{=}\operatorname{diag}(1-\mp@subsup{\boldsymbol{s}}{}{2}
```

Step 2.1, Fix \boldsymbol{s}, find minimizer \widehat{x} that satisfies: $\left(\boldsymbol{L}^{T} \boldsymbol{L}+\alpha_{1}^{2} \boldsymbol{D}^{T} W_{s} \boldsymbol{D}\right) \hat{\boldsymbol{x}}=\boldsymbol{L}^{T} \boldsymbol{y}$
Compute $\boldsymbol{W}_{\boldsymbol{x}}=\operatorname{diag}\left(\alpha_{1}^{2}(\boldsymbol{D} \boldsymbol{x})^{2}+\alpha_{3}^{2}\right)$
Compute $\mathbf{z}=\boldsymbol{W}_{\boldsymbol{x}}^{-1}\left(\alpha_{1}^{2}(\boldsymbol{D} \boldsymbol{x})^{2}\right)$

Step 2.2, Fix \boldsymbol{x}, find minimizer $\hat{\boldsymbol{s}}$ that satisfies: $\left(\boldsymbol{W}_{\boldsymbol{x}}+\alpha_{2}^{2} \boldsymbol{D}^{\boldsymbol{T}} \boldsymbol{D}\right) \hat{\boldsymbol{s}}=\boldsymbol{W}_{\boldsymbol{x}} \boldsymbol{Z}$ Compute W_{s}

Step 3: Convergent Solution

- Smooth edge preservation
- Model independent structure of H density

Results
Synthetic Model

Spherical Harmonics (2D)
$\rho\left(r_{k}, \theta=\frac{\pi}{2}, \phi\right)$
$=\mathcal{N}\left(r_{k}\right) \sqrt{4 \pi} \sum_{l=0}^{3} \sum_{m=0}^{l}\left[\left[A_{l m}\left(r_{k}\right) \cos (m \phi)\right.\right.$
$\left.\left.+B_{l m}\left(r_{k}\right) \sin (m \phi)\right] Y_{l m}=0,0\right)$
Realistic polar 10\%-20\% depletion region
Simulated Hydrogen field with
smoath depletion region
Angular Res.: $\frac{\pi}{15}$
Radial Res.: $1.5 R_{E}$

Viewing Geometries

IIlustration of Line-of-sight coverage of the 2-D field (green) from the
measurement positions along the satellite trajectory (red)
Observations along LOS that transit very near the earth (blue) or through its shadow (grey) are neglected due to complicated scattering physics occurring there that invalidates the forward model
Reconstruction Results

In addition, the reconstruction quality of a single "pixel" depends on:

- Amount of LOS passing through
- Magnitude of atmospheric density

Summary \& Future Work

1. We proposed the technique of tomographic inversion to make sense of the H density distribution, and the result is model-independent.
2. We proposed using Mumford-Shah functionals as the regularizer, which allows "smart" edge preservation while maintaining smoothness. It also produces superior results comparing to Total Variation method
3. We will aim at developing optimal regularization. parameter selection methods and investigating the fundamental limits of reconstruction resolution.

Acknowledgments
This work was supported by NASA award NNX16AF77G and by NSF award AGS 14-54839 CAR.
Contact Information
Email: yren6@illinois.edu

```
Reference
D. Mumford and \(J\). Shan, "Optimal approximations by piecewise smooth
functions and associated variational problems." Comminicaitons on pure functions and associated variational problems." \("\) "ommunications on pure
and applied mathematics, vol. 42, no. 5 , pp. \(577-685,1989\).
```



``` jumps by ellipitit functional viait-convergence," Communica
Applied Mathematics, vol. 43, no. 8, pp. 999-1 036,1990 .
```

