

QUALITY ASSESSMENT OF VOICE CONVERTED SPEECH USING ARTICULATORY FEATURES

Introduction

- Novel application of the Acoustic-to-Articulatory Inversion (AAI).
- The ability of humans to speak effortlessly requires the coordinated movements of various articulators.
- This effortless movement contributes towards a naturalness, intelligibility and speaker's identity.
- It is partially present in voice converted speech.
- Whether the articulatory information is lost during the VC process?
- How can this information loss quantified?
- Factors responsible for quality of VC

Proposed Objective Measure

- Uses MOCHA database [1].
- Gaussian mixture model (GMM)-based VC [2].
- Bilinear frequency warping plus amplitude scalingbased (BLFW+AS) VC [3].
- AAI: Generalized Smoothness Criterion (GSC) [4].
- Target and voice converted acoustic vector be given by and X_{tv} , respectively.
- Electromagnetic Articulography (EMA) vector of the target be Y,
- Estimated EMA vector from X_t and X_{tv} be Z_t and Z_{tv} respectively.

Table 1: Comparison of mutual information before & after VC

I (in bits)	Male Voice	Female Voice
$I(Q(\mathbf{X}_t), Q(\mathbf{Y}_t))$	1.402	1.504
$I(Q(\mathbf{X}_{tv}), Q(\mathbf{Y}_{t}))$	1.28	1.389

- Z_{tv} and Z_t were estimated using GSC-based technique.
- Z_{tv}, Z_t and Y_t were time-normalized (by applying DTW on X_{tv} and X_t) to obtain DZ_{tv}, DZ_t and DY_t, respectively.
- The estimation accuracy for each articulator position was compared by computing $\% \Delta$.

% change
$$(\Delta) = \frac{RMSE_{tv} - RMSE_{tt}}{RMSE_{tt}} \times 100$$
, (1)

- where *RMSE*_# is calculated between **DY**, and **DZ**, and *RMSE*_{ty} is an average RMSE between **DY**, and DZ_{tv} .
- The *Estimation Error (EE)* (in *mm*), measures the distance between articulatory trajectories of voice converted speech.

$$EE = \frac{1}{N} \left(\sum_{n=1}^{N} \sqrt{\sum_{d=1}^{M} \left(\mathbf{DZ}_{\mathbf{tv}_{d}}^{n} - \mathbf{DY}_{\mathbf{t}_{d}}^{n} \right)^{2}} \right), \qquad (2)$$

N is the length and M is the dimensionality of the articulator trajectory.

Avni Rajpal¹, Nirmesh J. Shah¹, Mohammadi Zaki², and Hemant A. Patil¹

¹Speech Research Lab, DA-IICT, Gandhinagar-382007, India and ²IISc, Bangalore 560012, India

Proposed System Architecture

Fig. 1: Proposed system architecture for estimating articulatory features from voice conversion (VC) system.

Experimental Results

Table 2: Comparison of an average RMSE in mm (along with standard deviation (SD) of RMSE is shown in the bracket). The dotted box indicates maximum % Δ (i.e., tongue tip is not estimated accurately compared to all other articulators).

								-							
	Articulators	li_x	li_y	ul_x	ul_y	ll_x	ll_y	tt_x	tt_y	tb_x	tb_y	td_x	td_y	v_x	v_y
	DMCE (CD)	0.6	1.11	0.77	1.36	1.28	2.09	2.83	3.5	2.66	2.56	2.35	2.67	0.56	1.19
Mala	RIVISE _{tt} (SD)	(0.1)	(0.3)	(0.2)	(0.2)	(0.3)	(0.4)	(0.8)	(0.8)	(0.6)	(0.5)	(0.6)	(0.5)	(0.2)	(0.5)
Voice	RMSE _{tv} (SD)	0.63	1.21	0.81	1.47	1.39	2.35	I 3.19	3.87	2.91	2.86	2.58	2.94	0.62	1.29
voice		(0.1)	(0.2)	(0.2)	(0.3)	(0.3)	(0.4)	(1)	(0.7)	(0.7)	(0.6)	(0.7)	(0.6)	(0.2)	(0.5)
	%0Δ	5	9	5.2	8.1	8.6	12.4	12.7	10.6	9.4	11.7	9.8	10.1	10.7	8.4
	DMCE (CD)	0.87	1.36	1.01	1.36	1.32	2.92	2.72	2.89	2.49	2.61	2.29	2.7	0.45	0.49
	RIVISE _{tt} (SD)	(0.2)	(0.3)	(0.4)	(0.3)	(0.3)	(0.6)	! (0.6)	(0.6)	(0.5)	(0.5)	(0.5)	(0.5)	(0.2)	(0.2)
Female	RMSE _{tv} (SD)	0.93	1.5	1.1	1.41	1.42	3.22	3.2	3.36	2.88	2.99	2.61	2.94	0.52	0.54
Voice		(0.2)	(0.3)	(0.4)	(0.3)	(0.3)	(0.7)	(0.7)	(0.6)	(0.6)	(0.5)	(0.6)	(0.4)	(0.2)	(0.2)
	%Δ	<mark>6.</mark> 9	10.3	8.9	3.7	7.6	10.3	17.6	16.3	15.7	14.6	14	8.9	15.6	10.2
										-		-	•		

• For a subjective measure, MOS of 360 samples, from 15 subjects (9 male and 6 females with 21-25 years of age).

Table 3: Subjective and objective scores of various VC systems

Ammaaab	Crustoma*]	M-F VC	2	F-M VC			
Approach	Systems.	MOS	MCD	EE	MOS	MCD	EE	
BLFW+AS	10_64	2.45	5.66	7.60	2.35	4.87	8.05	
	25_64	2.65	5.65	7.68	2.45	4.84	7.72	
	50_64	2.53	5.71	7.59	2.33	4.97	7.90	
	100_64	2.63	5.99	7.96	2.68	5.36	8.0	
	200_64	2.4	6.09	8.17	2.63	5.26	8.29	
	400_64	2.33	5.89	8.11	2.6	5.12	8.03	
GMM	10_32	2.48	3.97	7.76	2.1	3.98	7.28	
	25_32	2.3	4.04	7.29	2.2	3.92	6.92	
	50_64	2.53	3.80	7.42	2.15	3.93	7.12	
	100_64	2.53	4.24	7.61	2.18	4.16	7.03	
	200_64	2.23	4.08	7.76	2.3	4.09	7.36	
	400 64	2.35	4.235	7.438	2.225	4.09	7.04	

*Systems: Number of training utterances mixture components

Table 4: Correlation coefficients of MCD and *EE* with MOS

ObjectiveMeasure	GM	ſM	BLFW+AS		
Objectivelvicasuic	M-F	F-M	M-F	F-M	
MCD	-0.16	0.41	-0.33	0.87	
EE	-0.7	0.16	-0.5	0.46	

Fig. 2 : MCD vs. plot for selected systems (a)-(b) M-F and F-M GMM-based VC and (c)-(d) M-F and F-M BLFW+AS-based VC.

Fig. 3: Preference score based on MCD, EE, naturalness and ABX test for GMM and BLFW VC systems (a) M-F (b) F-M. Equal means, subjects could not judge and give equal preference score.

•	An	Ĭ
	be	

2007.

•	The
	Tech
	Dev
	(Pha
•	We
	eval

Correlation with Subjective Scores

Conclusion

mong all the articulators, tongue tip (known to critical for the speech production) shows highest $\% \Delta$.

• The AAI system poorly estimates the articulatory trajectories of a voice converted speech.

• After VC articulatory parameters related information is lost.

• MCD and EE are found be partially correlated.

• EE has more correlation with MOS.

• In preference test, MCD 100% contradicted preference test.

• EE supported subjective measure 45.8 % and 16.67 % for F-M and M-F VC, respectively.

References

[1] A. Wrench and W. Hardcastle, "A multichannel articulatory speech database and its application for automatic speech recognition," in *Proc.* 5th Seminar of Speech Production (SSP), Kloster Seeon, Germany, pp. 305-308, 2000.

[2] T. Toda, A. W. Black, and K. Tokuda, "Voice conversion based on maximum-likelihood estimation of spectral parameter trajectory," IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no. 8, pp. 2222-2235,

[3] D. Erro, E. Navas, and I. Hernaez, "Parametric voice conversion based on bilinear frequency warping plus amplitude scaling," IEEE Trans. on Audio, Speech, and Language Processing, vol. 21, no. 3, pp. 556-566, 2013.

[4] P. K. Ghosh and S. Narayanan, "A generalized smoothness criterion for acoustic-to-articulatory inversion," J. Acoust. Soc. Amer., vol. 128, no. 4, pp. 2162–2172, 2010.

Acknowledgements

e authors would like to thank Dept. of Electronics and Information hnology (DeitY), Govt. of India, for sponsored project, elopment of Text-to-Speech (TTS) System in Indian Languages ase-II) and the authorities of DA-IICT, Gandhinagar, India. also thanks all the participants who took part in subjective luation.