Unsupervised Speaker Adaptation of BLSTM-RNN for LVCSR Based on Speaker Code

Zhiying Huang¹, Shaofei Xue², Zhijie Yan², Lirong Dai¹

¹National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China, Hefei, P. R. China ²Alibaba Inc.

presented by Zhiying Huang / 黄智颖

Outline

- Introduction
- Proposed method
- Experiment and analysis
- Conclusion and future work

Outline

- Introduction
- Proposed method
- Experiment and analysis
- Conclusion and future work

Speaker code based adaptation relies on some speakerspecific discriminative codes, which are connected to a large speaker-independent neural network through a separate set of connection weights.

Speaker code based adaptation relies on some speakerspecific discriminative codes, which are connected to a large speaker-independent neural network through a separate set of connection weights.

Unsupervised speaker adaptation:

All unlabeled testing utterances of each testing speaker are used for adaptation stage.

Supervised speaker adaptation:

Part of the testing utterances are labelled, and they are used for adaptation stage.

Hybrid BLSTM-DNN topology

*: Li X, Wu X. Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition[C]//2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015: 4520-4524.

National Engineering Laboratory for Speech and Language Information Processing

Hybrid BLSTM-DNN topology

• BLSTMs are good at temporal modeling, and DNNs are appropriate for mapping features to a more separable space.

- For speaker adaptation, we try to reduce frequency variations and model temporal information of different speakers.
- Speaker code based adaptation in hybrid BLSTM-DNN topology?

*: Huang Z, Tang J, Xue S, et al. Speaker adaptation OF RNN-BLSTM for speech recognition based on speaker code[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016: 5305-5309.

National Engineering Laboratory for Speech and Language Information Processing

Outline

- Introduction
- Proposed method
- Experiment and analysis
- Conclusion and future work

National Engineering Laboratory for Speech and Language Information Processing

Ant-sun

autili i ter i hiddige

For the **fully-connected DNN** layer

The propagation equation

 $y^{l} = \varphi(W^{l}y^{l-1} + b^{l} + V^{l}s^{(p)})$

The gradients of V^l and $s^{(p)}$ of the *l*-th fullyconnected DNN layer (cross entropy criterion):

$$\frac{\partial E}{\partial V_{kj}^l} = \frac{\partial E}{\partial y_j^l} \varphi(\cdot)' s_k^{(p)}$$
$$\left(\frac{\partial E}{\partial s_k^{(p)}}\right)^l = \sum_{j=1}^{J_l} \frac{\partial E}{\partial y_j^l} \varphi(\cdot)' V_{kj}^l$$

HEL-SU

For the **BLSTM** layer

$$i_t = \sigma(W_{xi}x_t + W_{yi}y_{t-1} + W_{ci}c_{t-1} + b_i + V_is^{(p)})$$

$$f_t = \sigma(W_{xf}x_t + W_{yf}y_{t-1} + W_{cf}c_{t-1} + b_f + V_f s^{(p)})$$

$$a_t = \tanh(W_{xc}x_t + W_{yc}y_{t-1} + b_c + V_a s^{(p)})$$

$$c_t = f_t \odot c_{t-1} + i_t \odot a_t$$

$$o_t = \sigma(W_{xo}x_t + W_{yo}y_{t-1} + W_{co}c_t + b_o + V_os^{(p)})$$

 $y_t = o_t \odot \tanh(c_t)$

we define g represents i or f or a or o

$$\frac{\partial E}{\partial V_{g_{kj}}^{l}} = \frac{\partial E}{\partial g_{t_j}^{l}} \phi(\cdot)' s_k^{(p)}$$
$$\left(\frac{\partial E}{\partial s_k^{(p)}}\right)^{l} = \sum_{j=1}^{J_l} \frac{\partial E}{\partial g_{t_j}^{l}} \phi(\cdot)' V_{g_{kj}}^{l}$$

Where $\phi(\cdot)$ denotes active function (such as $\sigma(\cdot)$, $tanh(\cdot)$)

➤ mSA-SC

model space speaker adaptation based on speaker codes

SAT-SC

joint speaker adaptive training based on speaker codes

National Engineering Laboratory for Speech and Language Information Processing

Speaker code based adaptation on the hybrid BLSTM-DNN topology

mSA-SC

1) Training

The weights W^l are initialized by a pre-trained SI baseline, while $s^{(p)}$ and V^l are all initialized randomly. $s^{(p)}$ and V^l are learned using all training data with the back propagation (BP) algorithm while keeping W^l fixed.

2) Adaptation

 W^{l} and V^{l} remain unchanged and the speaker code of each testing speaker is learned based on the BP algorithm.

3) Testing

The speaker code is fed into the neural network through V^l for final recognition.

HEL-SUP

Speaker code based adaptation on the hybrid BLSTM-DNN topology

SAT-SC

1) Training

After mSA-SC training, $s^{(p)}$ and V^l are well-initialized. All model parameters (W^l , $s^{(p)}$ and V^l) can be jointly updated using all training data in SAT-SC training.

2) Adaptation

(The same as mSA-SC)

3) Testing

(The same as mSA-SC)

In the traditional speaker code based adaptation on DNN-HMM and BLSTM, $\frac{1}{L-1}$ is applied to scale the gradients of $s^{(p)}$ from each layer:

$$\frac{\partial E}{\partial s_k^{(p)}} = \sum_{l=1}^{L-1} \left[\frac{1}{L-1} \left(\frac{\partial E}{\partial s_k^{(p)}} \right)^l \right]$$

Where the *L* means the number of layer (include input, hidden and output layer).

Layer-width normalization

The fully-connected DNN layer owns probably more hidden nodes than the BLSTM layer, and it contributes to more accumulated errors for $s^{(p)}$ than the BLSTM layer. The gradients of $s^{(p)}$ from the fully-connected DNN layer and the BLSTM layer are unbalanced.

Layer-width normalization is proposed to use the reciprocal of the node number of fully-connected DNN or BLSTM layer to reduce the imbalance.

No norm

$$\frac{\partial E}{\partial s_k^{(p)}} = \sum_{l=1}^{L-1} \left[\frac{1}{L-1} \left(\frac{\partial E}{\partial s_k^{(p)}} \right)^l \right]$$
exper-width norm

$$\frac{\partial E}{\partial s_k^{(p)}} = \sum_{l=1}^{L-1} \left[\frac{\frac{1}{J_l}}{\sum_{k=1}^{L-1} \left(\frac{1}{J_k} \right)} \left(\frac{\partial E}{\partial s_k^{(p)}} \right)^l \right]$$

National Engineering Laboratory for Speech and Language Information Processing

SVD for model compression

SVD (singular value decomposition) :

- 1) The standard connection weights V^l are firstly trained, and they are jointly spliced into one $m \times n$ ($m = J_1 + J_2 + \dots + J_{L-1}$) matrix.
- 2) Standard SVD is used to decompose it and throw out some eigenvectors with small singular values to obtain a $m \times r$ (r < n) matrix.
- 3) Splitting it into L 1 matrices, low-rank connection weights $V_{lowrank}^{l}$ are generated, and they are used for adaptation and testing stage of speaker code based adaptation.

- Introduction
- Proposed method
- Experiment
- Conclusion and future work

- Switchboard (SWB) task
- Training data: 309-hour Switchboard-I training database and 20-hour Call Home English data (4870 speakers)
- Test set: Switchboard part of NIST 2000 Hub5e (40 speakers, 1831 utterances)
- MLE trained GMM-HMM (8882 tied states), which is used to obtain state labels
- 108-dimensional filter-bank features (with static, first and second order derivatives)
- 4-gram language model (LM) is trained using 3M words from the training transcripts and 11M words from the Fisher English Part 1 transcripts
- Learning criterion: cross-entropy (CE)

Hybrid BLSTM-DNN					
Model	3 * 500[BLSTM] + 2 * 2048[ReLU_DNN]				
Latency-controlled method	$N_c = 60, N_r = 30, stream = 30$				
WER (%)	13.0				

*: Zhang Y, Chen G, Yu D, et al. Highway long short-term memory RNNS for distant speech recognition[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016: 5755-5759.

Table 1: Comparison of WERs (in %) of different adaptation schemes of mSA-SC. The speaker code dimension is set to 1,000.

w/o or w/ adaptation	activation function	WER
w/o adaptation	_	13.0
	cell input	12.3
	input gate	12.9
w/ adaptation	forget gate	13.0
	output gate	12.8
	cell input + all gates	12.2

Table 1: Comparison of WERs (in %) of different adaptation schemes of mSA-SC. The speaker code dimension is set to 1,000.

w/o or w/ adaptation	activation function	WER
w/o adaptation	-	13.0
	cell input	12.3
	input gate	12.9
w/ adaptation	forget gate	13.0
	output gate	12.8
	cell input + all gates	12.2

Table 2: Comparison of WERs (in %) of SAT-SC for speaker adaptation with different connection schemes. The speaker code dimension is set to 1,000. (The WER of the baseline is 13.0%)

norm	Connection Scheme	WER
	BLSTM layers	12.0
no norm	fully-connected DNN layers	12.5
	all layers	12.2
layer-width norm	all layers	11.8

Table 2: Comparison of WERs (in %) of SAT-SC for speaker adaptation with different connection schemes. The speaker code dimension is set to 1,000. (The WER of the baseline is 13.0%)

norm	Connection Scheme	WER
	BLSTM layers	12.0
no norm	fully-connected DNN layers	12.5
	all layers	12.2
layer-width norm	all layers	11.8

Table 2: Comparison of WERs (in %) of SAT-SC for speaker adaptation with different connection schemes. The speaker code dimension is set to 1,000. (The WER of the baseline is 13.0%)

norm	Connection Scheme	WER
	BLSTM layers	12.0
no norm	fully-connected DNN layers	12.5
	all layers	12.2
layer-width norm	all layers	11.8

Table 3: WERs (in %) of SAT-SC for speaker adaptation with different speaker code (SC) dimensions. (The WER of the base-line is 13.0%)

SC dimension	300	500	1000	1500	2000
w/o SVD	12.1	12.3	11.8	12.0	12.1

Table 4: Comparison of WERs (in %) between i-vector and using SVD compression for speaker adaptation. (The WER of the baseline is 13.0%)

i-vector/SC dimension	200	300	400	500
i-vector	12.1	12.1	12.1	12.0
w/ SVD	11.8	11.8	12.0	11.9

Table 3: WERs (in %) of SAT-SC for speaker adaptation with different speaker code (SC) dimensions. (The WER of the base-line is 13.0%)

SC dimension	300	500	1000	1500	2000
w/o SVD	12.1	12.3	11.8	12.0	12.1

Table 4: Comparison of WERs (in %) between i-vector and using SVD compression for speaker adaptation. (The WER of the baseline is 13.0%)

i-vector/SC dimension	200	300	400	500
i-vector	12.1	12.1	12.1	12.0
w/ SVD	11.8	11.8	12.0	11.9

Table 3: WERs (in %) of SAT-SC for speaker adaptation with different speaker code (SC) dimensions. (The WER of the base-line is 13.0%)

SC dimension	300	500	1000	1500	2000
w/o SVD	12.1	12.3	11.8	12.0	12.1

Table 4: Comparison of WERs (in %) between i-vector and using SVD compression for speaker adaptation. (The WER of the baseline is 13.0%)

i-vector/SC dimension	200	300	400	500
i-vector	12.1	12.1	12.1	12.0
w/ SVD	11.8	11.8	12.0	11.9

- Introduction
- Proposed method
- Experiment
- Conclusion and future work

Conclusion and future work

Conclusion

- we conduct speaker code based adaptation on hybrid BLSTM-DNN topology in largescale Switchboard task.
- we use layer-width normalization to reduce the imbalance of back-propagation errors from different layers for speaker codes.
- SVD is used for compressing the dimension of speaker codes.

➤Future work

 explore in solving the disadvantage of two-pass decoding while conducting speaker code based adaptation.

Thank You for Listening! Q&A

Zhiying Huang /黄智颖 Email: zyhuang@mail.ustc.edu.cn

