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Connectomics 

 A connectome is a comprehensive map of neural connections 
in the brain, its wiring diagram 

 The full anatomical connectome at the level of individual 
neurons and synapses has been mapped for only one 
organism: the nematode Caenorhabditis elegans [White et al., 
1986; Varshney et al., 2011]  

 Partial connectomes of mouse retina [Briggman et al., 2011], 
mouse primary visual cortex [Bock et al., 2011], Drosophila 
lamina [Rivera-Alba et al., 2011] and Drosophila medulla 
[Takemura et al., 2013] have also been successfully 
reconstructed at the level of individual neurons and synapses 
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Connectomics 

 Connectome reconstruction from serial-section transmission 
electron micrographs (ssTEM) is a difficult image processing 
problem, relying on machine learning and crowdsourcing 

The semi-automated 
reconstruction pipeline for 
ssTEM images deployed at 
HHMI Janelia Farm 
[Chklovskii et al., 2010 ] 
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C. elegans Connectome 
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Adjacency matrices for 
the gap junction 
network (blue circles) 
and the chemical 
synapse network (red 
points) with neurons 
grouped by category 
[Varshney et al., 2011 ] 



C. elegans Connectome 
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The wiring diagram arranged so the direction of signal flow is mostly downward.  Neurons 
are identifiable, with sensory neurons (red); interneurons (blue); motorneurons (green) 
[Varshney et al., 2011 ] 



Connectomics 

 Experimental connectomics has been advancing, but how can 
we advance theoretical neuroscience? 
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Understand relationships between 
structure and function in the brain 
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 One approach to analysis is discovery-oriented 

 Simultaneously screen for several features of the anatomical 
network that may be associated with cognitive, behavioral, and 
psychiatric phenotype differences between nervous systems 

 Connectome-wide association study (CWAS) 
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Understand relationships between 
structure and function in the brain 
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Connectomics 

 Another approach is hypothesis-driven 

 

 Detailed simulation 



Connectomics: A Theoretical Approach 

 Use a hypothesis-driven approach to study a particular 
information-theoretic network functional that may provide 
insight into neural function 

 Neural efficiency hypotheses of intelligence argue that 
information flows better in the nervous systems of bright 
individuals 

 We have previously argued that information-theoretic capacity 
limits on information flow are predictive of behavioral speed 
[Varshney and Shah, 2011] 
– bottleneck capacity of the network emerges from a 

pipelining model of information flow 
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Connectomics: A Theoretical Approach 

 Here we ask whether the bottleneck capacity of the C. elegans 
neuronal network is significantly different from random 
graphs from ensembles that match other network functionals 

 Is the network non-random in allowing behavior that is faster 
or slower than other networks? 
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 Here we ask whether the bottleneck capacity of the C. elegans 
neuronal network is significantly different from random 
graphs from ensembles that match other network functionals 

 Is the network non-random in allowing behavior that is faster 
or slower than other networks? 

 

 (Restrict attention to gap junction network.  Note that it is a 
weighted network since there may be more than one gap 
junction between two neurons.  We previously found Shannon 
capacity of a gap junction, but that is just a scaling factor here.) 
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Connectomics: A Theoretical Approach 



Bottleneck Capacity from Pipelining Model of Information Flow 

 Think of a neuronal network as a communication network 
where neurons are nodes and synapses are capacitated links 

 Information must go over a single route rather than being split 
over several routes to be recombined by the destination 
[Pollack, 1960; Hu, 1961] 
– Different from max-flow/min-cut [Ford-Fulkerson, 1956; 

Elias-Feinstein-Shannon, 1956] 

Definition Let 𝐺 = 𝑉, 𝐸  be a weighted graph. Then the 
bottleneck distance between nodes 𝑠, 𝑡 ∈ 𝑉 is denoted 𝑑𝐵 𝑠, 𝑡  and 
is the number of edges connecting s and t, scaled by the weight of 
the maximum-weight edge, in the path with the smallest total 
scaled weight between them.  
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Bottleneck Capacity from Pipelining Model of Information Flow 

Lemma Let 𝑑𝐺 𝑠, 𝑡  be the geodesic distance and 𝑑𝑊 𝑠, 𝑡  be the 
weighted distance in a graph.  Then: 

𝑑𝑊 𝑠, 𝑡 ≤ 𝑑𝐵 𝑠, 𝑡 ≤ 𝑑𝐺 𝑠, 𝑡  

 

 The all-pairs geodesic distance and weighted distance are 
easy to compute, and can be used for bounding.  Bottleneck 
distance can also be computed using a maximum spanning 
tree algorithm 

 Geodesic distance and weighted distance are metrics, 
whereas bottleneck distance is an ultrametric (non-
Archimedean metric) [Rammal et al, 1986] 
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Bottleneck Capacity from Pipelining Model of Information Flow 

Definition The graph diameter is  
𝐷 =  max

𝑠,𝑡∈𝑉
𝑑 𝑠, 𝑡  

Definition For a network of size n, let 𝐹 𝑥  be the empirical cdf 

of the distances of all 
𝑛
2

 distinct node pairs. Then the effective 

diameter is: 
𝐷𝑒 = 𝑄 0.95  

where 𝑄 𝑝 = inf 𝑥 ∈ ℝ|𝑝 < 𝐹 𝑥  is corresponding quantile 
function (Defining constant is tighter than others in literature [Leskovec-Kleinberg-Faloutsos, 2007]) 

 

Bottleneck capacity inversely proportional to diameter                
(in the sequel we restrict to the giant component) 
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Bottleneck Capacity of C. elegans 

Bottleneck diameter effectively between 6 and 7 
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Bottleneck Capacity of Weighted Erdos-Renyi Random Graphs 

Bottleneck diameter effectively between 5 and 6 
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Consider random ensemble 
where structure is Erdos-
Renyi with probability 
of connection between two 
neurons matching C. 
elegans, p = 0.0133.  
Multiplicity of connections 
matches C. elegans, which is 
well-modeled as a power-
law with parameter 2.76. 



Bottleneck Capacity of Degree-Matched Random Graphs 

Bottleneck diameter effectively between 2 and 5 
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Consider random ensemble 
where structure is degree-
matched to C. elegans using 
random rewiring.  
Multiplicity of connections 
matches C. elegans, which is 
well-modeled as a power-
law with parameter 2.76. 



Main Result: Bottleneck Capacity Comparison 

< < 

 There is a surprising nonrandom feature in synaptic 
connectivity of the C. elegans gap junction network 

 The network has a nonrandomly worse bottleneck capacity 
compared to basic random graph ensembles 

 It enables globally slower behavioral speed than similar 
random networks 
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Making Sense of Things 

 The C. elegans neuronal network enables globally slower 
behavioral speed than similar random networks 

 In contrast, we had previously found that at the micro-level of 
small functional sub-circuits, the C. elegans gap junction 
network has several hub-and-spoke structures, which are 
optimal from an information flow perspective [Varshney and 
Shah, 2011] 

 

 There is a need for greater nuance in stating efficient 
information flow hypotheses in neuroscience 
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Conclusion 

 In terms of neural organization, smaller sub-circuits within the 
larger neuronal network are responsible for specific functional 
reactions, and these should have fast information flow (to 
quickly achieve the computational objective of that circuit, 
such as chemotaxis) 

 Behavioral speed of the global network may not be biologically 
relevant 

 

 Screen for individual behavioral phenotype differences to test 
experimentally 
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