

Scale Selective Extended Local Binary Pattern For Texture Classification

Yuting Hu, Zhiling Long, and Ghassan AlRegib Multimedia & Sensors Lab (MSL) Georgia Institute of Technology 03/09/2017

• Texture Representation and Its Challenge

• Proposed Local Descriptor, SSELBP

• Experimental Results

• Conclusion

Texture Definition

- Definition of texture^[1]:
 - The <u>feel</u> or <u>shape</u> of a <u>surface</u> or <u>substance</u> such as <u>smoothness</u>, <u>roughness</u>, and <u>softness</u>
- Texture is everywhere.

Why are Textures Important?

[1] http://www.robots.ox.ac.uk/~vgg/research/texclass/

[2] https://www.vis.uni-stuttgart.de/nc/lehre/details/typ/vorlesung/1767/98.html

[3] http://cs.brown.edu/courses/cs129/results/proj4/kgao/

[4] https://graphics.stanford.edu/~mdfisher/TextureSynthesis.html

Pipeline for Texture Classification

Texture Representation

Multimedia & Sensors

- Local feature descriptors
 - Handcrafted local descriptors
 - Gray Level Co-occurring Matrix (GLCM)
 - Markov Random Field (MRF)
 - Filter Banks
 - Scale-invariant Feature Transform (SIFT)
 - Speed-up Robust Features (SURF)
 - Local Binary Pattern (LBP)
 - Orientated FAST and Rotated BRIEF (ORB)
 - CNN local descriptors

Challenges in Texture Representation

• Illumination, rotation, and scale variations

Illumination

Rotation

• Texture Representation and Its Challenge

• Proposed Local Descriptor, SSELBP

• Experimental Results

• Conclusion

The Framework of SSELBP

The Framework of SSELBP

1

 2^p

Global Sign Pattern

$$ELBP_CI(x_c) = s(g_c - c_I), s(x) = \begin{cases} 1, \text{ if } x \ge 0\\ 0, \text{ if } x < 0 \end{cases}$$

• Neighboring Intensity Pattern

$$ELBP_NI_{P,R}(x_c) = \sum_{p=0}^{P-1} s(g_{p,R} - u_R) \cdot \\ = \sum_{p=0}^{P-1} s\left(g_{p,R} - \frac{1}{P} \sum_{p=0}^{P-1} g_{p,R}\right) \cdot 2^p.$$

Radial Difference Pattern

 $ELBP_RD_{P,R}(x_c) = \sum_{p=0}^{P-1} s(g_{p,R} - g_{p,R'}) \cdot 2^p.$

Example: P = 8

Multimedia

& Sensors

Rotation-invariant and uniform-2 ("riu2") Illumination and Rotation Invariance

The Framework of SSELBP

Single-scale- and Multi-scale- ELBP Histogram

Joint Histogram

Concatenated Histogram

The Framework of SSELBP

[1]: Z. Guo, X. Wang, J. Zhou, and J. You, "Robust texture image representation by scale selective local binary patterns," Image Processing, IEEE Transactions on, vol. 25, no. 2, pp. 687–699, 2016.

15

Maximum Pooling

Pipeline for Texture Classification

Multimedia

& Sensors

ÎAB 🗲

Chi-square distance between histogram T and M:

$$D(T, M) = \sum_{n=1}^{N} \frac{(T_n - M_n)^2}{T_n + M_n}$$

 T_n and M_n are the values of T and M at the n-th bin

Nearest neighbor classifier (NNC):

The class label of a test image is determined by the training image that has the minimal chi-square distance to the test image.

• Texture Representation and Its Challenge

• Proposed Local Descriptor, SSELBP

• Experimental Results

• Conclusion

Test Databases: KTHTIPS

Experimental Results

Table 1: Classification accuracy (%) of the proposed SSELBP using different sampling schemes on the KTH-TIPS database.

Number of Radius <i>, N</i>	Maximum Accuracy (%)	Radius Selection for Maximum	Mean Accuracy (%)	Standard Derivation	Feature Dimension
1	96.44	(2)	94.80	1.56	200
2	97.86	(1,6)	97.04	0.63	400
3	98.09	(2, 5, 8)	97.51	0.43	600
4	98.11	(2, 3, 4, 7)	97.71	0.30	800
5	98.10	(1, 2, 3, 4, 8)	97.84	0.20	1000

Table 2: Classification accuracy (%) of the proposed SSELBP and typical texture descriptors on the KTH-TIPS and UMD databases. The number in the bracket following databases denotes the number of training samples used per class.

Classification Accuracy	KTH-TIPS (40)	UMD (20)	
CLBP (Guo et al.)	97.19	98.00	
RP (Liu et al.)	97.71	99.13	
MRELBP (Liu et al.)	-	98.66	
SSLBP (Guo et al.)	97.80	98.84	
SSELBP (Proposed)	98.11	98.96	

• Texture Representation and Its Challenge

• Proposed Local Descriptor, SSELBP

• Experimental Results

• Conclusion

- To characterize texture images with scale variations, we extracted local scale variant multi-scale ELBP features and then applied a global transformation.
- The <u>maximum pooling</u> strategy of <u>multi-scale ELBP histograms</u> generated from <u>a scale space</u> selected dominant scales and addressed scale variation issues for texture images.
- SSELBP achieved high accuracy comparable to typical texture descriptors on gray-scale-, rotation-, and scale-invariant texture classification but uses only <u>one third</u> of the feature dimension of CLBP or SSLBP.