

Digital Signal Processing Lab, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

On the Preprocessing and Postprocessing of HRTF Individualization Based on Sparse Representation of Anthropometric Features

Jianjun He, Woon-Seng Gan, and Ee-Leng Tan {jhe007@e.ntu.edu.sg, ewsgan@ntu.edu.sg, etanel@ntu.edu.sg}

CONCLUSIONS

- 1. Introduced preprocessing and postprocessing in HRTF individualization based on sparse representation of anthropometric features.
- 2. Investigated 48 variants of preprocessing and postprocessing methods, and found
 - a) Preprocessing and postprocessing methods do affect the performance of HRTF individualization, though the effects differ in different combinations;
 - b) Adding nonnegative constraints in sparse representation improves the performance;
- c) The best combination for HRTF individualization is < standard score + log magnitude + nonnegative + normalized >.
- 3. Established the lower bound for this type of HRTF individualization and verified that "our best" combination outperforms existing approaches and is quite close to the lower bound.
- 4. Future work: subjective evaluation of HRTF individualization.

standard score).

113, Mar. 2015.

[5] S. J. Kim, K. Koh, M. Lusig, S. Boyd, and D. Gorinevsky, "An interiorpoint method for large-scale l1-regularized least squares," J. Selected topics in signal processing, vol. 1, no. 4, pp. 606-617, Dec. 2007.

Method	Specifications	SD (dB)
Single best	Select one single set of HRTF with the corresponding closest anthropometry	8.11
Bilinski et al [4]	Min-max PreA Magnitude PreH Direct sparse No reported postA	6.57
Our best	Standard score PreA Log magnitude PreH Nonnegative sparse Normalized PostA	5.86
Lower bound	Linear regression based HRTF individualization $\mathbf{w}^{(\text{opt})} = \left[\mathbf{H}^{(2)}\right]^{+} \mathbf{H}^{(2)}_{1}$	5.12

[1] K. Sunder, J. He, E. L. Tan, and W. S. Gan, "Natural sound rendering for headphones," IEEE Signal Processing Magazine, vol. 32, no.2, pp. 100-

[2] S. Carlile (2014) The plastic ear and perceptual relearning in auditory spatial perception. Front. Neurosci. 8:237. doi: 10.3389/fnins.2014.00237 [3] V. R. Algazi, R. O. Duda, D. M. Thompson, and C. Avendano, "The CIPIC HRTF database," in Proc. IEEE WASPAA, New Paltz, NY, Oct. 2001.

[4] P. Bilinski, J. Ahrens, M. R. P. Thomas, I. Tashev, and J. C. Plata, "HRTF magnitude synthesis via sparse representation of anthropometric features," in Proc. IEEE ICASSP, Florence, Italy, pp. 4501-4505, May 2014.