Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO

 Lee SwindlehurstCenter for Pervasive Communications and Computing, UC Irvine, USA Hela Jedda
Dept. of Electrical \& Computer Eng., Technical University of Munich, Germany Inbar Fijalkow
University of Cergy-Pointoise, ENSEA, France

Energy Efficiency in Massive MIMO

- Energy efficiency and hardware complexity are important issues for massive MISO/MIMO systems
- Use low fidelity hardware (e.g., one-bit ADCs/DACs) to minimize power consumption, low PAPR waveforms to (1) lower OOB interference and spectral regrowth and (2) allow PAs to operate with no back-off

Massive MISO Downlink

- Known flat-fading channel
- Symbol-rate model, ignoring spectral regrowth, distortion due to non-linearities
- Possible transmit signal non-linearities/constraints:
- one-bit DACs: $x_{i, n}=\sqrt{\frac{\rho}{2}}(\pm 1 \pm j)$
- PA saturation: $\left|x_{i, n}\right| \leq \sqrt{\rho}$
- constant modulus: $\left|x_{i, n}\right|=\sqrt{\rho}$

Massive MISO Downlink

- Possible transmit signal non-linearities/constraints:
- one-bit DACs: $x_{i, n}=\sqrt{\frac{\rho}{2}}(\pm 1 \pm j)$
- PA saturation: $\left|x_{i, n}\right| \leq \sqrt{\rho}$
- constant modulus: $\left|x_{i, n}\right|=\sqrt{\rho}$

Linear Precoding Performance

Non-linear effects applied to linear precoder output: $\mathbf{x}=\mathcal{Q}(\mathbf{P s})$

$$
\mathbf{r}=\mathbf{H} \mathcal{Q}(\mathbf{P} \mathbf{s})
$$

Example: One-bit ADCs, Zero-Forcing (ZF) Precoder, $\mathbf{P}=\mathbf{H}^{H}\left(\mathbf{H H}^{H}\right)^{-1}$ Assume $M \gg K \gg 1$, resulting asymptotic SER [1]:

$$
P_{e}=2 Q\left(\sqrt{\frac{\frac{4 \sigma^{2}(M-K)^{2}}{M K \pi}}{\frac{2 \sigma^{2}}{M}\left(1-\frac{2}{\pi}\right)(M-K)+\sigma_{n}^{2}}}\right)
$$

High SNR error floor:

$$
P_{e} \longrightarrow 2 Q\left(\sqrt{\frac{\frac{2}{\pi}}{1-\frac{2}{\pi}}\left(\frac{M}{K}-1\right)}\right)
$$

[1] A. Saxena, I. Fijalkow, A. Swindlehurst; Analysis of One-Bit Quantized Precoding for the Multiuser Massive MIMO Downlink, IEEE Trans. SP, Sept. 2017.

Linear Precoding Requires Large M / K

$$
\frac{M}{K}=\frac{128}{32}=4
$$

$$
\frac{M}{K}=\frac{128}{10}=12.8
$$

Since problem symbols are known beforehand, can adjust/perturb \mathbf{x} to push them away from decision boundaries

Non-Linear MSE Precoding

Directly minimize (noise-free) MSE at receivers:

$$
\mathbf{x}=\arg \min _{\substack{\beta \in \mathbb{R} \\ \mathbf{x} \in \mathcal{X}}}\|\mathbf{s}-\beta \mathbf{H} \mathbf{x}\|
$$

- Probhibitively complex, especially for a massive antenna array (for one-bit DACs, d^{M} possible \mathbf{x} for constellations of size d)
- Approximate solution for one-bit DACs based on ℓ_{∞} relaxation proposed in [2] (SQUID)
- Approximate solutions also proposed for constant modulus and PA saturated signals
- MSE criterion does not directly minimize decoding error probability at users.
[2] S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer; Quantized Precoding for Massive MU-MIMO, IEEE Trans. Commun., Nov. 2017.

Alternative for PSK Symbols: Minimum BER Precoding

- MSE penalizes received signals far from constellation point, even though they may be reliably decoded
- Use performance metric that maximizes the distance or "safety margin" δ of the received signal from the decision boundary
- Also referred to as exploiting "constructive interference" in work by Masouros, Ottersten, etc.
- Here we focus on PSK signals, although formulations are available for QAM as well
- To define the metric, rotate symbols to 1 :

$$
\mathbf{z}=\operatorname{diag}(s)^{H} \mathbf{H} \mathbf{x}=\tilde{\mathbf{H}} \mathbf{x}
$$

Safety Margin for D-PSK Signals

Examples from Prior Work

- CVX-CIO [3], constant modulus \mathbf{x}, relaxed convex optimization

$$
\mathbf{x}=\arg \max _{\left|x_{i}\right| \leq c} \min _{k=1, \cdots, K} \delta_{k}(\mathbf{x})
$$

[3] P. V. Amadori and C. Masouros, "Constant envelope precoding by interference exploitation in phase shift keying-modulated multiuser transmission," IEEE Trans. Wireless Commun., Jan 2017.

- Direct perturbation method [4] for one-bit DACs, greedy perturbation of $\hat{\mathbf{x}}=\mathcal{Q}(\mathbf{P s})$ to increase $\delta(\mathbf{x})$
[4] A. Swindlehurst, A. Saxena, A. Mezghani, and I. Fijalkow, "Minimum probability-of-error perturbation precoding for the one-bit massive MIMO downlink," in Proc. IEEE ICASSP, March 2017.
- Linear programming method [5] for one-bit DACs with relaxed box constraint

$$
\mathbf{x}=\arg \max _{\substack{\left|x_{i \mathbb{R}}\right| \leq c \\\left|x_{i \mathbb{I}}\right| \leq c}} \min _{k=1, \cdots, K} \delta_{k}(\mathbf{x})
$$

[5] H. Jedda, A. Mezghani, J. Nossek, and A. Swindlehurst, "Massive MIMO downlink 1-bit precoding with linear programming for PSK signaling," in Proc. IEEE SPAWC, July 2017.

Motivation for Reduced Dimension Algorithm

- Previous algorithms require (1) a relaxation of the non-linear transmit constraint, and (2) an iterative search over a constrained vector \mathbf{x} of dimension M, which for massive MIMO is very large:

$$
\mathbf{x}(p+1)=\mathbf{x}(p)+\boldsymbol{\epsilon}(p)
$$

- Idea: (1) Maintain the constraint at each iteration, and (2) reduce complexity by searching in the K-dimensional symbol space:

$$
\mathbf{x}(p+1)=\mathcal{Q}(\mathbf{P}(\mathbf{s}(p)+\boldsymbol{\epsilon}(p)))
$$

- In the proposed approach, we used gradient descent to update the perturbation $\boldsymbol{\epsilon}(p)$:

$$
\boldsymbol{\epsilon}(p+1)=\boldsymbol{\epsilon}(p)+\mu \tilde{\nabla}_{\boldsymbol{\epsilon}}^{*} \delta(p)
$$

where the gradient $\tilde{\nabla}_{\epsilon}^{*} \delta(p)$ is obtained using a continuous approximation of the non-linearity, or ignoring it altogether.

Reduced Dimension Algorithm

1. Given $\mathbf{s}, \tilde{\mathbf{H}}, \mathbf{P}$, number of iterations N_{p}, and stepsize μ, set $p=1$ and $\epsilon(1)=0$.
2. Calculate $\mathbf{z}=\tilde{\mathbf{H}} \mathcal{Q}(\mathbf{P s})$ and $\delta(1)$.
3. Set $\mathbf{s}_{\text {opt }}=\mathbf{s}$ and $\delta_{o p t}=\delta(1)$.
4. For $p=1$ to N_{p}, do
(a) Find $\boldsymbol{\epsilon}(p+1)=\boldsymbol{\epsilon}(p)+\mu \tilde{\nabla}_{\boldsymbol{\epsilon}}^{*} \delta(p)$.
(b) Calculate $\mathbf{z}=\tilde{\mathbf{H}} \mathcal{Q}(\mathbf{P}(\mathbf{s}+\boldsymbol{\epsilon}(p+1)))$ and $\delta(p+1)$.
(c) If $\delta(p+1)>\delta_{o p t}$, set $\delta_{o p t}=\delta(p+1)$ and $\mathbf{s}_{o p t}=\mathbf{s}+\boldsymbol{\epsilon}(p+1)$.
5. Output solution $\mathbf{s}_{\text {opt }}$.

Example 1: One-Bit DACs

Example 2: Constant Modulus Signals

Conclusions

- Energy efficiency / hardware complexity important issues for massive MISO/MIMO
- Use low fidelity hardware (e.g., one-bit ADCs/DACs) to minimize power consumption, low-PAPR waveforms to lower OOB interference and spectral regrowth, eliminate PA back-off
- Linear precoding: low complexity, but good performance with transmit constraints/non-linearities requires large M / K
- Non-linear precoding: significantly better performance, but high complexity (M-dimensional search)
- Proposed algorithm: perturb linearly precoded symbols, requires search in only K-dimensional space
- Achieves performance similar to more complex methods

