
Step 2: Kernel Selection

To select the best kernels for the utility, we
perform a filtering procedure based on the
Discriminant Information (DI) metric [2,3]:

�� = trace �� + �� ����

where �� and �� are the centered and the between
class scatter matrices.

Since KDCA captures the utility information,
combining KDCA projections with kernel selection
has an effect of utility-maximizing space mining.

Step 3 : Deep Learning Based Compression

To distill the utility information further, we utilize a
DNN with a narrow, funneling layer. The DNN
processes multiple KDCA projections to form a
Compressive Hybrid.
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Introduction and Motivation
• The advent of IOT and Big Data creates

privacy concerns.
• The threat to privacy motivates the Principle

of Least Privilege to be applied to Big Data.
• We consider the application of privacy

preserving classification.
• We look for data representations that are

helpful with the utility, but nothing else.
• We perform lossy compression in the private

sphere, before the data is released.

Method
Our methodology combines two regimes; Kernel

Based Learning and Deep Learning.

Step 1: Kernel Based Compression
We apply the utility maximizing lossy compression

method called KDCA [1]. A KDCA projection can be
derived via the optimization:

����� = argmax
�: �� �� ����� � 

trace �����

where �� is the centered kernel matrix and �� is the
kernel between-class scatter matrix.

The projection obtained from � training samples
can then be applied to the data via the kernel trick:

�� = �� � − �
�

��� �.

For classification with � classes, � − 1 dimensional
projections can capture all the discriminant power,
allowing for a high compression rate.

Experimental Results

Conclusion
• Multi-KDCA with kernel selection achieves

the best utility performances, demonstrating
the importance of the space mining process.

• Multi-Kernel and Deep Learning based
compression can effectively remove private
information, while maintaining high utility.
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