Adaptive Parameters Adjustment for Group Reweighted Zero-Attracting LMS

Jie Chen* Cédric Richard[†] Jingdong Chen* Danqi Jin* *Northwestern Polytechnical University, China [†] Université Côte d'Azur, CNRS, OCA, France

Introduction and main contributions

Introduction: Group zero-attracting LMS (GZA-LMS) and group reweighted zero-attracting LMS (GRZA-LMS) have been proposed for addressing system identification problems with structural group sparsity. Both algorithms however suffer from a trade-off between sparsity degree and estimation bias and, between convergence speed and steady-state performance. It is therefore necessary to properly set their step size and regularization parameter. Based on a model of their transient behavior, we introduce a variable-parameter variant of both algorithms to address this issue.

Contributions

▷ We derive closed-form expressions of the optimal step size and regularization parameter.

Parameter design using transient behavior model

 \blacktriangleright Given the MSD ξ_n at time instant n, we determine the parameters $\{\mu_n, \rho_n\}$ that minimize the MSD ξ_{n+1} :

 $\{\mu_n^\star, \rho_n^\star\} = \arg\min_{\mu, \rho} \xi_{n+1} \,|\, \xi_n.$ Using the recursion of trace $\{Q_{n+1}\}$, we have: $\{\mu_n^{\star}, \rho_n^{\star}\} = \arg\min_{\mu, \rho} \operatorname{trace}\{Q_{n+1}\}$ $= \arg\min_{\mu,\rho} \operatorname{trace} \{ Q_n \} + \mu^2 g + \rho^2 h + 2\mu\rho\ell - 2\mu r_1 - 2\rho r_2.$ Equivalently, in matrix form:

▷ New algorithms achieve a lower mean-square deviation (MSD).

System model and group-sparse LMS

 \blacktriangleright Consider the time sequence $\{d_n, u_n\}$ related via the linear model $d_n = \boldsymbol{u}_n^\top \boldsymbol{w}^\star + z_n$

with $\boldsymbol{u}_n \in \mathbb{R}^L$ and $\boldsymbol{w}^\star \in \mathbb{R}^L$.

To determine w^* , consider the MSE criterion with $\ell_{1,2}$ -norm regularization:

$$\boldsymbol{w}_{\text{GZA}}^{\text{o}} = \arg\min_{\boldsymbol{w}} \frac{1}{2} \mathbb{E} \left\{ [\boldsymbol{d}_{n} - \boldsymbol{w}^{\top} \boldsymbol{u}_{n}]^{2} \right\} + \lambda \|\boldsymbol{w}\|_{1,2}, \quad \|\boldsymbol{w}\|_{1,2} = \sum_{j=1}^{J} \|\boldsymbol{w}_{\mathcal{G}_{j}}\|_{2}$$

 $\ell_{1,2}$ -norm is used to promote the group-sparsity of the estimate.

▷ GZA-LMS and GRZA-LMS algorithm:

 $\boldsymbol{w}_{n+1} = \boldsymbol{w}_n + \mu \, e_n \boldsymbol{u}_n - \rho \, \boldsymbol{\beta}_n \circ \boldsymbol{s}_n$

where $e_n = d_n - \boldsymbol{w}_n^\top \boldsymbol{u}_n$, μ is the step size, $\rho = \mu \lambda$, \boldsymbol{s}_n is vector form of $\boldsymbol{s}_{n,\mathcal{G}_i}$, $\boldsymbol{s}_{n,\mathcal{G}_{j}} = \begin{cases} \frac{\boldsymbol{w}_{n,\mathcal{G}_{j}}}{\|\boldsymbol{w}_{n,\mathcal{G}_{j}}\|_{2}} & \text{for } \|\boldsymbol{w}_{n,\mathcal{G}_{j}}\|_{2} \neq 0\\ 0 & \text{for } \|\boldsymbol{w}_{n,\mathcal{G}_{j}}\|_{2} = 0, \end{cases}$

 $\boldsymbol{\beta}_n$ is vector form of $\beta_{n,j}$, $\beta_{n,j} = 1/[\|\boldsymbol{w}_{n,\mathcal{G}_j}\|_2 + \varepsilon]$ corresponds to GRZA-LMS, $\beta_{n,j} = 1$ corresponds to GZA-LMS, symbol \circ denotes the Hadamard product.

 $\xi_{n+1} = [\mu \rho] \boldsymbol{H} [\mu \rho]^\top - 2 [r_1 r_2] [\mu \rho]^\top + \xi_n, \quad \text{with } \boldsymbol{H} = \begin{bmatrix} g & \ell \\ \ell & h \end{bmatrix}$

which is a quadratic function of $[\mu \rho]$, and H is a positive semidefinite matrix. ► Solution:

$$[\mu_n^\star \ \rho_n^\star]^ op = \boldsymbol{H}^{-1}[r_1 \ r_2]^ op,$$

i.e.,

$$\mu_n^{\star} = rac{hr_1 - \ell r_2}{gh - \ell^2}, \quad \rho_n^{\star} = rac{gr_2 - \ell r_1}{gh - \ell^2}.$$

 \triangleright Adopt approximations for quantities: g, h, ℓ, r_1, r_2 . \triangleright Impose nonnegative constraints as well as temporal smoothing for μ_n^{\star} and ρ_n^{\star} .

Simulation results

Consider non-stationary system identification scenarios:

System parameter vectors:

- $-0.5, \mathbf{0}_5, 0.5, 0.25, 0.5, -0.25, -0.5]^{\top};$
- $\boldsymbol{w}_{2}^{\star} = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, \boldsymbol{1}_{17}, -0.1, -0.2,$ $-0.3, -0.4, -0.5, -0.6, -0.7, -0.8 - 0.9]^{\top};$

► Trade-off

- $\triangleright \mu$ controls the trade-off between convergence speed and steady-state performance.
- $\triangleright \rho$ controls the trade-off between sparsity degree and estimation bias.

It is therefore crucial to adaptively adjust μ and ρ .

Transient behavior model of GRZA-LMS

Define the weight error vector and its covariance matrix by

 $\tilde{\boldsymbol{w}}_n = \boldsymbol{w}_n - \boldsymbol{w}^\star$ and $\boldsymbol{Q}_n = \mathbb{E}\{\tilde{\boldsymbol{w}}_n \tilde{\boldsymbol{w}}_n^\top\}$

The recursion of $\tilde{\boldsymbol{w}}_n$ writes

 $\tilde{\boldsymbol{w}}_{n+1} = \tilde{\boldsymbol{w}}_n + \mu \boldsymbol{u}_n z_n - \mu \boldsymbol{u}_n \boldsymbol{u}_n^{\top} \tilde{\boldsymbol{w}}_n - \rho \boldsymbol{\beta}_n \circ \boldsymbol{s}_n$

Assumptions:

- $\triangleright \mathbf{A1}$: The weight error vector $\tilde{\boldsymbol{w}}_n$ is statistically independent of \boldsymbol{u}_n .
- \triangleright A2: The input regressor u_n is a zero-mean white signal with covariance matrix $\boldsymbol{R}_u = \sigma_u^2 \boldsymbol{I}$.
- \triangleright A2': The input regressor u_n is Gaussian distributed.
- \blacktriangleright With the independence assumption **A1**, we have:

MSE: $\mathbb{E}\{e_n^2\} = \sigma_z^2 + \text{trace}\{R_uQ_n\}$

 $\boldsymbol{w}_{3}^{\star} = [1.2, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.2, 0.5, 0.4, \boldsymbol{0}_{15}, -0.4,$ $-0.5, -0.2, -0.4, -0.5, -0.6 - 0.7, -0.8, -0.9, -1.2]^{+}$

At time instant n = 1, 8000 and 16000, we set the system parameter vector to $\boldsymbol{w}_1^{\star}, \, \boldsymbol{w}_2^{\star}$ and \boldsymbol{w}_3^{\star} , respectively.

Input signal:

 \triangleright Experiment 1: Zero-mean white Gaussian with $\sigma_n^2 = 1$. (A1, A2, A2') Experiment 2: Generated from a first-order AR process

 $u_n = 0.5 u_{n-1} + v_n$

with zero-mean random variable v_n generated from Gaussian mixture distribution

 $0.5 \mathcal{N}(a \cdot \sigma_v, \sigma_v^2) + 0.5 \mathcal{N}(-a \cdot \sigma_v, \sigma_v^2).$

- ► Additive noise: z_n was zero-mean i.i.d. Gaussian with $\sigma_z^2 = 0.01$.
- ▶ Parameters: L = 35, group size $|\mathcal{G}_i| = 5$, $\varepsilon = 0.1$. We set the parameters of all the algorithms so that the initial convergence rate of their MSD was almost the same.
- ► MSD learning curves (average of 100 MC runs)

By utilizing white input assumption A2, we have: EMSE: $\zeta_n = \text{trace}\{R_u Q_n\} = \sigma_u^2 \text{trace}\{Q_n\} = \sigma_u^2 \xi_n \rightarrow \text{MSD}$ Under assumptions A1 and A2: min MSE \iff min MSD

Determine a recursion to relate the MSD at two consecutive time instants:

trace{ Q_{n+1} } = trace{ Q_n } + $\mu^2 g + \rho^2 h + 2\mu\rho\ell - 2\mu r_1 - 2\rho r_2$

with

$$g = \sigma_z^2 \operatorname{trace} \{ \boldsymbol{R}_u \} + \mathbb{E} \{ \boldsymbol{u}_n^\top \tilde{\boldsymbol{w}}_n \tilde{\boldsymbol{w}}_n^\top \boldsymbol{u}_n \boldsymbol{u}_n^\top \boldsymbol{u}_n \} \leftarrow \mathsf{A2'}$$

$$h = \mathbb{E} \{ (\boldsymbol{\beta}_n \circ \boldsymbol{s}_n)^\top (\boldsymbol{\beta}_n \circ \boldsymbol{s}_n) \}, \quad \ell = \mathbb{E} \{ \tilde{\boldsymbol{w}}_n^\top \boldsymbol{u}_n \boldsymbol{u}_n^\top (\boldsymbol{\beta}_n \circ \boldsymbol{s}_n)$$

$$r_1 = \mathbb{E} \{ \tilde{\boldsymbol{w}}_n^\top \boldsymbol{u}_n \boldsymbol{u}_n^\top \tilde{\boldsymbol{w}}_n \}, \quad r_2 = \mathbb{E} \{ (\boldsymbol{\beta}_n \circ \boldsymbol{s}_n)^\top \tilde{\boldsymbol{w}}_n \}.$$

How to derive an adaptive parameters adjustment strategy?

Figure: MSD learning curves (left: white input; right: non-Gaussian colored input).

Figure: (a) Evolution of the step size μ and (b) the regularization parameter λ .

ICASSP 2018, Calgary, Canada

danqijin@mail.nwpu.edu.cn; dr.jie.chen@ieee.org Contact: