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Introduction and main contributions Parameter design using transient behavior model

» Introduction: Group zero-attracting LMS (GZA-LMS) and group reweighted
zero-attracting LMS (GRZA-LMS) have been proposed for addressing system
identification problems with structural group sparsity. Both algorithms however
suffer from a trade-off between sparsity degree and estimation bias and, between
convergence speed and steady-state performance. |t is therefore necessary to
properly set their step size and regularization parameter. Based on a model
of their transient behavior, we introduce a variable-parameter variant of both
algorithms to address this issue.

» Contributions

> We derive closed-form expressions of the optimal step size and regularization
parameter.

> New algorithms achieve a lower mean-square deviation (MSD).

» Given the MSD &, at time instant n, we determine the parameters { i, p,, } that
minimize the MSD §&,,,1:

{pm, P} = argmin &ui | &n,
Using the recursion of trace{Q, .}, we have:
{w, pr }=argmin trace{Q,,.}
1P
= arg min trace{Qn}+,u2§]+,02h+2,u,0€—2,u7°1—2pr2.
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Equivalently, in matrix form:

¢
Snii=upl H [ppl —2[ri ) [pp] +&, with H= ”Z )

which is a quadratic function of i p|, and H is a positive semidefinite matrix.
> Solution:

System model and group-sparse LMS

wrpnl' = H )

» Consider the time sequence {d,,, u,} related via the linear model
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with u, € IR* and w* € R".

» To determine w™, consider the MSE criterion with ¢; >-norm regularization:
> Adopt approximations for quantities: g, h, £, ry, ro.
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Wy, = arg mul;n§ ‘L{[dn —w ' u,)] } + Mw|i2, w2 = E ||ngH2 > Impose nonnegative constraints as well as temporal smoothing for 1> and pr.
j=1
> {1 2-norm is used to promote the group-sparsity of the estimate. Simulation results

> GZA-LMS and GRZA-LMS algorithm:

Wn+1 :wn_i_,uenun_plﬁnosn

W, 4 is the step size, p = A, s, is vector form of s, g,

Consider non-stationary system identification scenarios:
» System parameter vectors:
w; = (0.8, 0.5, 0.3, 0.2, 0.1, 045, —0.05, —0.1, —0.2, —0.3,
— 0.5, 05, 0.5, 0.25, 0.5, —0.25, —0.5] ';

ws = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 1,7, —0.1, —0.2,
— 0.3, —0.4, —0.5, —0.6, —0.7, —0.8 — 0.9] ";

wi =[1.2, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.2, 0.5, 0.4, 0;5, —0.4,
— 0.5, —0.2, —0.4, —0.5, —0.6 — 0.7, —0.8, —0.9, —1.2]".

At time instant n = 1, 8000 and 16000, we set the system parameter vector to
w7, ws and w3, respectively.
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B, is vector form of 3, ;, 8,; = 1/[||w, g ||, + €] corresponds to GRZA-LMS,
By.; = 1 corresponds to GZA-LMS, symbol o denotes the Hadamard product.

» Trade-off

> 14 controls the trade-off between convergence speed and steady-state
performance.
> p controls the trade-off between sparsity degree and estimation bias.

» Input signal:
> Experiment 1: Zero-mean white Gaussian with 02 = 1.+-A1l, A2, A2’
> Experiment 2: Generated from a first-order AR process

It is therefore crucial to adaptively adjust 1 and p.

Transient behavior model of GRZA-LMS

wy, = 0.0U,—1 + vy,

with zero-mean random variable v,, generated from Gaussian mixture distribution
0.5N(a-o0,,02) +05N(—a- o, 07).

» Additive noise: z, was zero-mean i.i.d. Gaussian with o2 = 0.01.

» Define the weight error vector and its covariance matrix by

ﬁ)n — Wy — w” and Qn — 43{,&”{&)7—{}

The recursion of w,, writes

T ~

Wy = Wy, + (U2, — Uy, W, — pf3, 0 Sy, » Parameters: L = 35, group size |G;| =5, € = 0.1.

We set the parameters of all the algorithms so that the initial convergence rate

» Assumptions: .
P of their MSD was almost the same.

> Al: The weight error vector w,, is statistically independent of u,,.

> A2: The input regressor u,, is a zero-mean white signal with covariance
matrix R, = o-1.

> A2’: The input regressor u,, is Gaussian distributed.

» MSD learning curves (average of 100 MC runs)
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» With the independence assumption Al, we have:
MSE: E{e>} = o> + trace{ R, Q,,}
By utilizing white input assumption A2, we have:
EMSE: ¢, = trace{R,.Q, } = o trace{Q, } = o2&, — MSD
Under assumptions Al and A2: min MSE <= min MSD

» Determine a recursion to relate the MSD at two consecutive time instants:
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Figure: MSD learning curves (left: white input; right: non-Gaussian colored input).
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» How to derive an adaptive parameters adjustment strategy? Figure: (a) Evolution of the step size 1 and (b) the regularization parameter \.
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