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Introduction and main contributions

I Introduction: Group zero-attracting LMS (GZA-LMS) and group reweighted
zero-attracting LMS (GRZA-LMS) have been proposed for addressing system
identification problems with structural group sparsity. Both algorithms however
suffer from a trade-off between sparsity degree and estimation bias and, between
convergence speed and steady-state performance. It is therefore necessary to
properly set their step size and regularization parameter. Based on a model
of their transient behavior, we introduce a variable-parameter variant of both
algorithms to address this issue.

I Contributions
. We derive closed-form expressions of the optimal step size and regularization

parameter.
. New algorithms achieve a lower mean-square deviation (MSD).

System model and group-sparse LMS

I Consider the time sequence {dn,un} related via the linear model

dn = u
>
nw

? + zn

with un ∈ IRL and w? ∈ IRL.
I To determine w?, consider the MSE criterion with `1,2-norm regularization:

wo
GZA = argmin

w

1

2
E
{
[dn −w>un]2

}
+ λ‖w‖1,2, ‖w‖1,2 =

J∑
j=1

‖wGj‖2
. `1,2-norm is used to promote the group-sparsity of the estimate.
. GZA-LMS and GRZA-LMS algorithm:

wn+1 = wn + µ enun − ρβn ◦ sn
where en = dn−w>nun, µ is the step size, ρ = µλ, sn is vector form of sn,Gj,

sn,Gj =


wn,Gj
‖wn,Gj‖2

for ‖wn,Gj‖2 6= 0

0 for ‖wn,Gj‖2 = 0,

βn is vector form of βn,j, βn,j = 1/[‖wn,Gj‖2 + ε] corresponds to GRZA-LMS,
βn,j = 1 corresponds to GZA-LMS, symbol ◦ denotes the Hadamard product.

I Trade-off
. µ controls the trade-off between convergence speed and steady-state

performance.
. ρ controls the trade-off between sparsity degree and estimation bias.

It is therefore crucial to adaptively adjust µ and ρ.

Transient behavior model of GRZA-LMS

I Define the weight error vector and its covariance matrix by

w̃n = wn −w? and Qn = E{w̃nw̃
>
n}

The recursion of w̃n writes

w̃n+1 = w̃n + µunzn − µunu>n w̃n − ρβn ◦ sn
I Assumptions:

. A1: The weight error vector w̃n is statistically independent of un.

. A2: The input regressor un is a zero-mean white signal with covariance
matrix Ru = σ2uI.

. A2’: The input regressor un is Gaussian distributed.

I With the independence assumption A1, we have:

MSE: E{e2n} = σ2z + trace{RuQn}
By utilizing white input assumption A2, we have:

EMSE: ζn = trace{RuQn} = σ2u trace{Qn} = σ2u ξn→ MSD

Under assumptions A1 and A2: min MSE ⇐⇒ min MSD

I Determine a recursion to relate the MSD at two consecutive time instants:

trace{Qn+1} = trace{Qn} + µ2g + ρ2h + 2µρ`− 2µr1 − 2ρr2

with
g = σ2z trace{Ru} + E{u>n w̃nw̃

>
nunu

>
nun} ← A2’

h = E
{
(βn ◦ sn)>(βn ◦ sn)

}
, ` = E

{
w̃>nunu

>
n (βn ◦ sn)

}
r1 = E

{
w̃>nunu

>
n w̃n

}
, r2 = E

{
(βn ◦ sn)>w̃n

}
.

I How to derive an adaptive parameters adjustment strategy?

Parameter design using transient behavior model

I Given the MSD ξn at time instant n, we determine the parameters {µn, ρn} that

minimize the MSD ξn+1:

{µ?n, ρ?n} = argmin
µ,ρ

ξn+1 | ξn.

Using the recursion of trace{Qn+1}, we have:

{µ?n, ρ?n}=argmin
µ,ρ

trace{Qn+1}
=argmin

µ,ρ
trace{Qn}+µ2g+ρ2h+2µρ`−2µr1−2ρr2.

Equivalently, in matrix form:

ξn+1 = [µ ρ]H [µ ρ]> − 2 [r1 r2] [µ ρ]
> + ξn, with H =

[
g `

` h

]
which is a quadratic function of [µ ρ], and H is a positive semidefinite matrix.

I Solution:

[µ?n ρ
?
n]
> =H−1[r1 r2]

>,

i.e.,
µ?n =

hr1 − `r2
gh− `2 , ρ?n =

gr2 − `r1
gh− `2 .

. Adopt approximations for quantities: g, h, `, r1, r2.

. Impose nonnegative constraints as well as temporal smoothing for µ?n and ρ?n.

Simulation results

Consider non-stationary system identification scenarios:

I System parameter vectors:

w?
1 = [0.8, 0.5, 0.3, 0.2, 0.1, 015, −0.05, −0.1, −0.2, −0.3,
− 0.5, 05, 0.5, 0.25, 0.5, −0.25, −0.5]>;

w?
2 = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 117, −0.1, −0.2,
− 0.3, −0.4, −0.5, −0.6, −0.7, −0.8 − 0.9]>;

w?
3 = [1.2, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.2, 0.5, 0.4, 015, −0.4,
− 0.5, −0.2, −0.4, −0.5, −0.6 − 0.7, −0.8, −0.9, −1.2]>.

At time instant n = 1, 8000 and 16000, we set the system parameter vector to
w?

1, w
?
2 and w?

3, respectively.
I Input signal:
. Experiment 1: Zero-mean white Gaussian with σ2u = 1.←A1, A2, A2’
. Experiment 2: Generated from a first-order AR process

un = 0.5un−1 + vn

with zero-mean random variable vn generated from Gaussian mixture distribution

0.5N (a · σv, σ2v) + 0.5N (−a · σv, σ2v).
I Additive noise: zn was zero-mean i.i.d. Gaussian with σ2z = 0.01.
I Parameters: L = 35, group size |Gj| = 5, ε = 0.1.

We set the parameters of all the algorithms so that the initial convergence rate
of their MSD was almost the same.

I MSD learning curves (average of 100 MC runs)
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Figure: MSD learning curves (left: white input; right: non-Gaussian colored input).
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Figure: (a) Evolution of the step size µ and (b) the regularization parameter λ.
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