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Variational Inference

Nonparametric Bayesian models have been implemented in diction-
ary learning. However, for signal samples from multiple subspaces,
existing methods only learn one uniform dictionary and thus are not
optimal for representing the subspace structures. To address this is-
sue, we first utilize a combination of Dirichlet process and hierar-
chical Beta process as priors to infer the latent subspace number
and dictionary dimension automatically; second, to derive tractable
variational inference, we modify the priors with the Sethuraman'’s
construction and further employ the multinomial approximation.
Experimental results indicate that our approach can achieve a set of
nonparametric subspace dictionaries, while showing performance
enhancements in the tasks of image denoising.

We focus on variational inference procedures for the proposed DP-
HBP-based model by updating factorized variational distributions O
to minimize their KL divergence, which is equivalent to the maximi-
zation of the marginal likelihood lower bound £

L =FEolp(X, M|H)] +H[Q],

To maximize it, we derive a coordinate ascent inference algorithm:

(1) Coordinate update for the Dirichlet process:

o oc exp{E | -5 In(2ma) — acllz; — Dow;||3/2]
+E[In p. + ;=) In(1 — p1)]},
q(p.)= Beta (1 + Zi\il Eer M + Zf\il Zlczc—l—l gl)v
q()= Gamma (a+C~1,b= 7 ' Elln(1 - p,)]),

(2) Coordinate update for the hierarchical Beta process:

Nonparametric Bayesian Model

Note: To infer HBP parameters, we need to evaluate an expectation
term which is a byproduct of lower bound and has not a closed form.
Here we resort to the multinomial approximation to lower bond it.

The conventional dictionary learning framework:
r; = Dw; + ¢ e, |In (1 ol § wcmﬂ

The basic model for subspace dictionary learning: . |In (Z’f Can(y) (1—wwey) 1?%):11 wcm)]
e | y= qr(y

> B By [In (1 — @0y) + 3% 2 In e | + H(gi).
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xr; =D w; + €

where c(7)denotes the subspace index of signal sample T;

Note: For brevity, details of updated distributions is omitted here.

In nonparametric Bayesian framework, our model includes 3 parts:
(1) Sparse representation using subspace dictionaries:

€Tr; ~ N(Dc(z)wz, O{C_(,})IP),

K
D) ~ [Tz N (0, 51p),
Ww,; = =< O S;, S8; ~~ N(O,IK),

We evaluate the proposed variational inference for nonparametric
subspace dictionary learning (NSDL) in image denoising tasks.
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zi|me ~ [, Bernoulli(re), Vi : c(i) = c,
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(2) Modeling subspace number with Dirichlet process:
G = Zzi1 &—CdGc ™ DP(% {Gc}gil)a
c(2) ~ Multinomial(§),
£ ~ GEM(n), n ~ Gamma(a, b),

c—1
Sc — Pecllj— (1 _ pl)a Pc ™ Beta(la 77)

Note: By placing a Dirichlet process over the multiple dictionaries,
the number of underlying subspaces can be automatically learned.
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H =2 0, ~ BP\ Hy), ¢S H, Comparisons of denoising PSNR as a function of noise deviation:
. Image
- 5O iid - Barbara Lena Boats House Peppers
Ge = Zk:l 7Tfﬁ“"ﬂd%pck B,P(/YC’ H)’ TV 29.77 3271  31.64 33.76  32.40 1) L d at £ diff
= ¢ Uop ~ Multinomial(v) 1o | K-SVD [ 33.96 3487 33.13 3543  32.99 (1) Learned atoms of differ-
Pk Uek ) Ck 7 BPFA 34.32 35.37 33.54  35.81 34.15 ent subspace dictionaries
L k B t 1 NSDL 34.50 35.57 33.70 35.98 34.31
ek — Hm:1 Wemy Wem ™~ DE a(fYc: )7 TV 27.49  30.96  29.79  31.89  30.44 are grouped by textures;
; 5 | K-SVD | 31.72  33.01 3138 3356  31.25 T
Vy = szl Bi, B; ~ Beta(A,1). BPFA | 3240 3358 3171 3216 3214 (2) Dictionary number and
NSDL 32.69 33.84 31.96 34.45 32.44 dimenSion are inferrEd'
. . . . TV 26.01 29.84 28.50 30.76 29.25 )
Note: By placing a hierarchical Beta process over the subspace dic- p | KSVD [ 3006 3153 2987 3261 2953 (3) The proposed method
tionaries, the correlations among them can also be described. . L L orovides improvement in
In contrast to the conventional HBP priors, we utilize a Sethuraman’s TV | 2507 2887  27.57 29.96  28.26 the image denoising task
o . - - - K-SVD 28.80 30.48 28.91 31.51 28.35 .
stick-breaking construction to achieve closed-form inference. 2> —BPFA | 2071 3128 2936 3201  29.72 9 9
NSDL 30.03 31.45 30.12 32.33 30.09




