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•  x is unit normalized D dimensional data 
and ϕ is the VMF model.�

•  Parameters – μ is the mean and λ is 
the concentration parameter�

•  Iv(u) is the Bessel function of the first 
kind with order v�
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Goal of the study�

DIRICHLET	PROCESS	MIXTURE	MODELS	FOR	CLUSTERING	I-VECTOR	DATA	

 

Von Mises-Fisher Distribution�

Non-parametric Bayesian methods have recently gained popularity in 
unsupervised learning. They are capable of simultaneously learning the 
cluster models as well as their number based on properties of a dataset. 
The most commonly applied models are Dirichlet process Gaussian 
mixture models (DPGMMs). Recently, von Mises-Fisher mixture models 
(VMMs) have also gained popularity in modelling high-dimensional unit-
normalized features such as text documents and gene expression data. 
VMMs are potentially more efficient than GMMs in modeling certain 
speech representations such as i-vector data as they work with unit-
normalized features based on cosine distance. We investigate the 
applicability of DPVMMs for i-vector-based speaker clustering and 
verification.�

Dirichlet Process Mixture Models�

 

Gaussian�
When the mixture component is Gaussian i.e.θk ={μk,Σk} 
representing the mean and variance parameters. We consider the 
conjugate prior i.e. The Normal Inverse Wishart distribution.�
�
Von Mises-Fisher model�
VMF models i.e.θk ={μk,λk} represent the mean and concentration 
parameters. The  prior p(θk) = p(μk|λk)p(λk), where p(μk|λk) is 
modelled by a VMF distribution and p(λk) modelled by a Gamma 
distribution�
�
�
�

combined to give the the Dirichlet process G as
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It can be proven that G generated in this way is equivalent to G � DP (�, H). The
sampling of of � in this way is call as the Gri�ths-Engen-McCloskey(GEM) process and
can written simply as � � GEM(�). Another way to view this is via, cluster indices
zi. By sampling this weight distribution �, we can find the model/cluster index of the
data instance xi. Sampling an infinite discrete sequence, {�k}�

k=1 from the base measure
H , gives the potential model parameters. Hence we represent the weights and model
parameters separately by introducing the cluster index variable zi. The Bayesian graph
and equations corresponding to new interpretation is model of the DPMM is shown in
Figure 3
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Figure 3: Bayesian graph of a DPMM based on the Stick breaking process

Chinese restaurant process (CRP) :- The stick breaking construction provides a
theoretical way to construct the weight distribution, �, for an infinite number of clusters.
The Chinese restaurant process (CRP)[1] provides a practical way to generate a finite
number of clusters from a DP and makes this clustering structure more explicit. The
analogy is as follows, let us assume that there is a Chinese restaurant with infinitely
many tables. Customers enter this restaurant one by one and sit randomly on the tables.
The tables represent clusters and the customers, the instances of the data, xi. The table
that each customer sits on is indicated by an integer zi, which is the cluster index.

At a certain point in time let there be K occupied tables with n1, n2, ..., nK customers
sitting on each table respectively. Let the total number of customers in the restaurant

be N i.e.
K�

k=1
nk = N . Now, the (N + 1)th customer to enter the restaurant can

• choose to sit at any of the occupied tables, say k, with probability n
k

N+�

• choose to sit at a new table with probability �
N+�
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Figure 1: Bayesian graph of a DPMM based on the stick-
breaking construction. Nodes indicate variables, arrows indi-
cate dependencies, and plates indicate repetition.

clustering problem. The stick-breaking process [24] is consid-
ered here and the corresponding Bayesian graph is shown in
Figure 1. Here, ⇥ is the space of all parameter values that is
partitioned as countably infinite discrete values {✓

k

}1
k=1. The

DPMM is then written as

G =

1X

k=1

⇡
k

�(✓ = ✓
k

) (2)

where the weights {⇡
k

}1
k=1 are obtained from the concentration

parameter ↵ using the Griffiths-Engen-McCloskey (GEM) pro-
cess. This means that a DPMM has an infinite number of com-
ponents, and is therefore often called an infinite mixture model.
When the components are Gaussian, i.e. ✓

k

= {µ
k

,⌃
k

} repre-
senting the mean and variance parameters, the model is called
Dirichlet process Gaussian mixture model. The latent variables
{z

i

}N

i=1 denote the cluster to which the N data points {x
i

}N

i=1

are assigned when assignments are sampled from the mixture
weights ⇡. Finally, the observed variables x

i

are then sampled
from the model F (✓

zi) = N (µ
zi ,⌃zi). The base distribution

H can be seen as a prior for GMM parameters ✓. Since it is not
possible to obtain a direct analytic solution for the DPGMM pa-
rameters, a number of inference techniques have been proposed
for learning the model from observed data.

2.1.1. Markov Chain Monte Carlo

Markov chain Monte Carlo [16, 15] methods draw samples ac-
cording to a Markovian chain where the equilibrium distribution
corresponds to the target distribution. Several MCMC meth-
ods have been studied for posterior estimation in DPMMs [25].
This paper explores two Gibbs sampling based variants of these
methods called the collapsed [17] and blocked samplers [18]. In
Gibbs sampling ([16, 15]), each variable in the DPGMM is iter-
atively sampled from its conditional posterior distributions with
respect to every other variable one after another. Typically, this
process is repeated until a convergence criterion is met. How-
ever, when using this process for DPGMMs, the number of pa-
rameters tends to vary across iterations when the number of in-
ferred clusters changes. This makes it difficult to apply many
standard convergence measures to MCMC-based DPMMs as
they require analysis of parameters across multiple iterations
of the algorithm.

The collapsed sampler proposed in [17] marginalises out
the model G. This is only possible when the base distribu-
tion, H , is chosen as the conjugate prior of a Gaussian, i.e.
the normal inverse-Wishart (NIW) distribution [26]. The col-
lapsed sampler has a per iteration complexity of O(NKD3),
where K is the number of clusters at that iteration and D is
the dimensionality of the data. In contrast, blocked samplers
do not marginalise out model parameters but sample concur-
rently multiple variables from their joint posterior distributions

conditioned on the remaining variables. When applied to DPG-
MMs, the model parameters {✓

k

}1
k=1 are sampled from the pos-

terior base distributions H of each cluster k at each iteration.
Since there are, theoretically, an infinite number of clusters in a
DPGMM, the blocked sampler proposed in [18] uses a truncated
version of the model with a certain finite T clusters. Since G is
not integrated out, H is not restricted to be NIW . The blocked
sampler has a per iteration complexity of O(TD3 + TND2).
While individual iterations in a blocked sampler are faster than
in a collapsed sampler, the blocked sampler is expected to need
more iterations to converge [19].

2.1.2. Variational Bayes

Variational Bayes methods [15] approximate the analytically in-
tractable posterior with a tractable distribution called the vari-
ational distribution. This is typically done by making some
independence assumptions that simplify the posterior distribu-
tion. Kullback–Leibler (KL) divergence to the true posterior
is then minimised to find the variational distribution. Varia-
tional methods were introduced to DPMMs by Blei and Jordan
[19]. In practice, the final update equations are similar to the
expectation–maximisation (EM) algorithm that iterates between
finding the probabilities of z

i

(called responsibilities) based on
current the model and updating model parameters based the cur-
rent responsibilities. The variational mixture model proposed
in [19] is truncated at a truncation limit T to deal with the infi-
nite number of clusters of the DPGMM. Alternative approaches
to variational inference in DPGMM framework are discussed
in [27, 28]. VB inference has a per iteration complexity of
O(TD3 + TND2).

2.2. Reference Methods

DPGMMs are compared to two standard clustering methods:
K-means and finite mixture models. K-means is applied to the
data for varying number of clusters and the solution with the
lowest Davies–Bouldin index [6] is chosen. DBI is defined for
two clusters i and j as

R
i,j

= (S
i

+ S
j

)/M
i,j

(3)

where S
i

is the mean distance (Euclidean used) between the
points and the centroid in cluster i and M

i,j

is the distance be-
tween cluster centroids. The larger the index, the closer are the
clusters. In case of three or more clusters, DBI is defined as the
mean of the highest R

i,j

for each cluster measured across all
clusters i.

The finite mixture models by Figueiredo and Jain [20] use
the minimum message length [7, 29] criterion in conjunction
with GMMs to estimate the number of clusters automatically.
The process starts with a large number of clusters and merges
clusters if that leads to a decrease in the MML criterion. This
method can also be viewed from a Bayesian perspective as plac-
ing a Dirichlet-type prior on the cluster probabilities.

3. Experiments

3.1. Evaluation

The overall clustering performance was measured as the har-
monic mean of overall purity Q

clust

of the clusters and concen-
tration Q

class

of class-specific samples across the clusters, i.e.,
Q

tot

= 2 ⇥Q
clust

Q
class

/(Q
clust

+Q
class

) 2 [0, 1]. Q
clust

was defined as the weighted mean entropy of the clusters (notice

•  A Dirichlet process is a 
distribution over 
probability measures on a 
measurable space Θ �

•  Uniquely defined by base 
distribution H and 
concentration parameterα, 
written as G ∼ DP(α,H). �

Variational Inference�

 

Experiments�

 

•  The clustering experiments were conducted using DPVMM, DPGMM 
and k-means with cosine distance on the NIST SRE 2014 
development partition that contains 600-dimensional i-vector 
features extracted from 4958 speakers. �

•  DPVMM and k-means used observations that were normalised to 
unit length; and DPGMM used observations that were compressed 
into D = {50,10} dimensions with PCA. �

•  The clustering methods were evaluated on test datasets that included 
M = {10, 100, 500, 650} speakers with most observations. �

•  Speaker verification experiments were conducted on the complete 
dataset using using FASTPLDA, with PLDA parameters determined 
on the 650 speaker dataset. �

Evaluation�

 

Speaker Clustering�
Accuracy as geometric mean of average cluster and speaker purities:�
�

Table 1. Speaker clustering and verification performance.
ACP ASP Acc ARI EER DCF

labelled 1.00 1.00 1.00 1.00 1.67 0.35
k-means 0.61 0.60 0.60 0.55 2.70 0.43
DPVMM 0.65 0.52 0.58 0.40 2.54 0.46
DPGMM 0.13 0.43 0.24 0.01 5.77 0.64

are reported with PCA D = 50 which was better than D =

10 for large M . As expected, PLDA trained on clustered data
does not achieve as good performance as the labelled supervised
case. When unsupervised approaches are used, speaker verification
results improve when the cluster solution is improved, so that the
best results are achieved with k-means and DPVMM clustered
data. However, while k-means clusters are evaluated as better than
DPVMM clusters, DPVMM clustered data resulted in lower EER.

The previous experiments used DPVMM and DPGMM with
random initialisation and fixed truncation limit. Experiments with
DPVMM based on random and k-means initialisation at T =

{1000, 2000, 5000} are reported in Table 2. Experiments were
conducted on the 650-speaker dataset, and the truncation limit
T was also used as K in k-means initialisation. The results
show that k-means initialisation improves DPVMM cluster solutions
compared to random initialisation. DPVMM (k-means) also
improves clusters compared to initialisation when T > 1000, but the
cluster solutions are evaluated best when T = 1000. This is not the
case when random initialisation is used, as DPMM (random) clusters
with T > 1000 are better or comparable to T = 1000. Experiments
were also conducted with DPGMM, but the method did not update
the cluster solution compared to k-means initialisation.

5. DISCUSSION AND CONCLUSIONS

This paper compared variational DPVMM, DPGMM, and standard
k-means with cosine distance in speaker clustering and verification
task using i-vector features. The experiments indicate that
despite the approximations required to make variational inference
tractable, speaker clusters estimated with DPVMM were evaluated
comparable to the k-means clusters estimated based on the correct
of number clusters. DPGMM solutions were also comparable to
k-means solutions in the 10-speaker condition when 10-dimensional
features were used. However in the other conditions, DPGMM
could not model the data well, and better results were achieved with
DPVMM and k-means. We also observed that k-means initialisation
improves performance of the DPVMM. This effect is especially
pronounced when K is close to M .

DPVMMs are expected to model i-vector data better than
DPGMMs since i-vectors are directional (see also [12]), but the
experiments show that this is not the case in the 10-speaker condition
when DPGMM is applied on 10-dimensional data. This indicates
that DPGMMs can model speaker clusters when i-vectors can be
mapped to low-dimensional features without too much information
loss. The observation is in line with previous work, as Shum
et al. [24] also described that GMM-based solutions were better
than or comparable to VMM-based solutions in i-vector-based
speaker-diarisation task with 3-dimensional features and less than
10 speakers. However, low-dimensional features cannot capture
differences between speakers in larger datasets such as datasets
needed to train PLDA parameters. GMM-based models are not
well-suited to model high-dimensional data, unlike VMMs which
handle this well since they work on cosine distance.

Table 2. Speaker clustering and verification performance with
varying K/T and initialisations

K/T ACP ASP Acc) ARI EER DCF
1000 0.75 0.55 0.64 0.60 2.63 0.40
2000 0.82 0.38 0.55 0.46 2.76 0.38
5000 0.91 0.17 0.39 0.20 2.95 0.36
1000 0.55 0.54 0.54 0.40 2.73 0.46
2000 0.63 0.54 0.58 0.43 2.61 0.45
5000 0.65 0.52 0.58 0.40 2.54 0.46
1000 0.74 0.60 0.66 0.58 2.48 0.41
2000 0.78 0.52 0.64 0.51 2.45 0.41
5000 0.77 0.48 0.60 0.43 2.38 0.43
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Related to comparison between DPGMM and DPVMM
approaches, the DPGMM experiments reported here used full
covariance matrices as proposed in [24]. To evaluate whether
this is a problem when less data is available per speaker, we also
experimented with more constrained covariances. While diagonal
or spherical covariances did not improve the performance, DPGMM
with task-optimised covariance parameters was able to outperform
DPVMM. A fixed concentration parameter could also be used in
the DPVMM, in which case there would be no need to use an
approximation on the variational lower bound. However, it is not
clear how the covariance or concentration parameter should be
optimised, especially in case cluster sizes could be expected to vary.
The current work thus focussed on more flexible solutions.

While evaluation focussed on comparison between estimated
clusters and speaker classes, cluster solutions were also evaluated
in a speaker verification task. These results indicated that when
labelled data is not available, speaker models can be reasonably
estimated based on the k-means or DPVMM solutions. However,
we also observed that EER and DCF cannot be predicted based on
cluster evaluation measures and that the same clustering solution
is not guaranteed to optimise both measures. For example, we
observed the best minimum DCF when the 650-speaker parameter
estimation data was partitioned into K = 5000 clusters with
k-means. This is potentially because DCF emphasises false
acceptance rate which could be easier to minimise when the
observations are oversegmented so that the estimated within-speaker
variation is small. Oversegmentation does not occur with DPVMM
since the number of clusters is inferred based on the observed data.

The current experiments focussed on i-vector data, but
the variational DPVMM updates and MATLAB implementation
presented in this work are expected to handle any high-dimensional
data that can be unit normalised and clustered based on cosine
distance. The variational method can also be easily adapted to work
with very large datasets using SVI [17]. DPVMMs should therefore
make a potential candidate also for other speech clustering tasks such
as the zero-resource systems for under-resourced languages [4].
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Table 1. Speaker clustering and verification performance.
ACP ASP Acc ARI EER DCF

labelled 1.00 1.00 1.00 1.00 1.67 0.35
k-means 0.61 0.60 0.60 0.55 2.70 0.43
DPVMM 0.65 0.52 0.58 0.40 2.54 0.46
DPGMM 0.13 0.43 0.24 0.01 5.77 0.64

are reported with PCA D = 50 which was better than D =

10 for large M . As expected, PLDA trained on clustered data
does not achieve as good performance as the labelled supervised
case. When unsupervised approaches are used, speaker verification
results improve when the cluster solution is improved, so that the
best results are achieved with k-means and DPVMM clustered
data. However, while k-means clusters are evaluated as better than
DPVMM clusters, DPVMM clustered data resulted in lower EER.

The previous experiments used DPVMM and DPGMM with
random initialisation and fixed truncation limit. Experiments with
DPVMM based on random and k-means initialisation at T =

{1000, 2000, 5000} are reported in Table 2. Experiments were
conducted on the 650-speaker dataset, and the truncation limit
T was also used as K in k-means initialisation. The results
show that k-means initialisation improves DPVMM cluster solutions
compared to random initialisation. DPVMM (k-means) also
improves clusters compared to initialisation when T > 1000, but the
cluster solutions are evaluated best when T = 1000. This is not the
case when random initialisation is used, as DPMM (random) clusters
with T > 1000 are better or comparable to T = 1000. Experiments
were also conducted with DPGMM, but the method did not update
the cluster solution compared to k-means initialisation.

5. DISCUSSION AND CONCLUSIONS

This paper compared variational DPVMM, DPGMM, and standard
k-means with cosine distance in speaker clustering and verification
task using i-vector features. The experiments indicate that
despite the approximations required to make variational inference
tractable, speaker clusters estimated with DPVMM were evaluated
comparable to the k-means clusters estimated based on the correct
of number clusters. DPGMM solutions were also comparable to
k-means solutions in the 10-speaker condition when 10-dimensional
features were used. However in the other conditions, DPGMM
could not model the data well, and better results were achieved with
DPVMM and k-means. We also observed that k-means initialisation
improves performance of the DPVMM. This effect is especially
pronounced when K is close to M .

DPVMMs are expected to model i-vector data better than
DPGMMs since i-vectors are directional (see also [12]), but the
experiments show that this is not the case in the 10-speaker condition
when DPGMM is applied on 10-dimensional data. This indicates
that DPGMMs can model speaker clusters when i-vectors can be
mapped to low-dimensional features without too much information
loss. The observation is in line with previous work, as Shum
et al. [24] also described that GMM-based solutions were better
than or comparable to VMM-based solutions in i-vector-based
speaker-diarisation task with 3-dimensional features and less than
10 speakers. However, low-dimensional features cannot capture
differences between speakers in larger datasets such as datasets
needed to train PLDA parameters. GMM-based models are not
well-suited to model high-dimensional data, unlike VMMs which
handle this well since they work on cosine distance.

Table 2. Speaker clustering and verification performance with
varying K/T and initialisations

K/T ACP ASP Acc) ARI EER DCF
1000 0.75 0.55 0.64 0.60 2.63 0.40
2000 0.82 0.38 0.55 0.46 2.76 0.38
5000 0.91 0.17 0.39 0.20 2.95 0.36
1000 0.55 0.54 0.54 0.40 2.73 0.46
2000 0.63 0.54 0.58 0.43 2.61 0.45
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approaches, the DPGMM experiments reported here used full
covariance matrices as proposed in [24]. To evaluate whether
this is a problem when less data is available per speaker, we also
experimented with more constrained covariances. While diagonal
or spherical covariances did not improve the performance, DPGMM
with task-optimised covariance parameters was able to outperform
DPVMM. A fixed concentration parameter could also be used in
the DPVMM, in which case there would be no need to use an
approximation on the variational lower bound. However, it is not
clear how the covariance or concentration parameter should be
optimised, especially in case cluster sizes could be expected to vary.
The current work thus focussed on more flexible solutions.

While evaluation focussed on comparison between estimated
clusters and speaker classes, cluster solutions were also evaluated
in a speaker verification task. These results indicated that when
labelled data is not available, speaker models can be reasonably
estimated based on the k-means or DPVMM solutions. However,
we also observed that EER and DCF cannot be predicted based on
cluster evaluation measures and that the same clustering solution
is not guaranteed to optimise both measures. For example, we
observed the best minimum DCF when the 650-speaker parameter
estimation data was partitioned into K = 5000 clusters with
k-means. This is potentially because DCF emphasises false
acceptance rate which could be easier to minimise when the
observations are oversegmented so that the estimated within-speaker
variation is small. Oversegmentation does not occur with DPVMM
since the number of clusters is inferred based on the observed data.

The current experiments focussed on i-vector data, but
the variational DPVMM updates and MATLAB implementation
presented in this work are expected to handle any high-dimensional
data that can be unit normalised and clustered based on cosine
distance. The variational method can also be easily adapted to work
with very large datasets using SVI [17]. DPVMMs should therefore
make a potential candidate also for other speech clustering tasks such
as the zero-resource systems for under-resourced languages [4].
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where nij , ni , nj , N are the number of utterances in  cluster i spoken by 
speaker j, the number of utterances in cluster I, number of utterances 
spoken by speaker j and the total number of speakers respectively.�
�
Speaker Verification�
•  Equal Error Rate: calculated at an operation point t where false 

acceptance and false rejection errors occur at equal rate �
•  Minimum Decision Cost Function: Calculated at point t where DCF(t) is 

minimum�
  DCF(t) = FRR(t) + 100 × FAR(t) �

Results�

 

3. EXPERIMENTAL SETUP

3.1. Evaluation

The speaker clustering experiments conducted in this work use
DPVMM, DPGMM and k-means with cosine distance to partition
i-vector data into clusters. The cluster solutions are evaluated (1)
based external measures that compare estimated partition to true
speaker classes and (2) based on application performance. The
external measures used in this work are adjusted Rand index (ARI)
[34] and an accuracy (ACC) measure calculated as geometric mean
between average cluster purity (ACP) and average speaker purity
(ASP) [5, Section 7.1]. In addition, cluster solutions are evaluated
as substitute to labelled parameter estimation data in PLDA-based
speaker verification [22]. The evaluation was conducted with
the standard PLDA and evaluation measures implemented in [25].
PLDA model trained based on labelled data is included in the
evaluation as reference. The evaluation measures include equal error
rate (EER) and minimum decision cost function (DCF). EER is
calculated at an operation point t where false acceptance and false
rejection errors occur at equal rate, whereas DCF emphasises false
acceptance errors, DCF(t) = FRR(t) + 100⇥ FAR(t).

3.2. Data

The experiments were conducted on the NIST SRE 2014
development partition that contains 600-dimensional i-vector
features extracted from 4958 speakers [21]. Experiments
conducted with DPVMM and k-means used observations that were
normalised to unit length whereas experiments conducted with
DPGMM used observations that were compressed into D =

{50, 10} dimensions with PCA. The clustering methods were
evaluated on test datasets that included M = {10, 100, 500, 650}
speakers with most observations. The datasets included N =

{474, 2931, 10495, 12786} observations. The speaker verification
experiments were conducted on the complete dataset partitioned
as follows. The system parameters were determined based on the
dataset that included 650 speakers with most data. The enrolled
speaker set included 1031 speakers. The speakers included in this
set had recorded 10–15 utterances. 5 utterances were used to model
the speaker, as in [21, 23] and the rest were used test data. 3277

impostors with 1–10 utterances were also represented in the test
dataset.

3.3. Methods

The component-conditioned distribution parameters in DPVMM and
DPGMM were modelled as random variables with prior distributions
discussed in Section 2.1.1–2.1.2. The prior parameters in DPVMM
were set as follows. The mean direction in prior distribution
p(µk|�k) was set to the observed mean µ0 =

P
n xn/||

P
n xn||

while �0 was set to 0.01 to indicate a low trust on the prior mean
direction. The prior distribution for concentration parameter was
chosen to favour unconcentrated solutions: the gamma distribution
shape parameter was set to 1 and the inverse scale parameter was set
1/50. DPGMM component means and covariances were modelled
with prior distribution NW(µ0,0, 0, ⌫0) whose parameters were
set similar to those recommended in [31]: µ0 and  0 were set to
the dataset mean and precision, 0 = 1, and ⌫0 = D + 2. The
concentration parameter ↵ was fixed to 1.

DPVMM and DPGMM posteriors were approximated with a
truncated variational model, and experiments were conducted with
truncation limit T = 5000 unless otherwise mentioned. The

Fig. 1. Speaker clustering performance with M = {10, 100, 500}
speakers, based on accuracy (bars) and ARI (-).

model parameters were initialised based on observations assigned
to clusters at random or based on k-means solution, and variational
updates were continued until the difference between evidence
lower bound in consecutive iterations did not exceed 0.001 per
observation or when 500 iterations were reached. For evaluation,
observations were assigned to clusters and labelled based on
variational distribution probabilities q(zn). Since optimisation can
converge to local maxima, experiments were repeated 20 times.

The experiments were conducted in MATLAB with variational
DPVMM and DPGMM implementations1 that are made available
under an open-source license. Related to the DPVMM
implementation, we note that while the first-order approximation
proposed in [11] (Section 2.2) makes the evidence lower
bound and parameter updates calculable, I⌫(u) is still an issue
when calculations are implemented in finite precision. The
implementation evaluated in this work uses both MATLAB function
besseli and an approximation based on the simple bound
proposed in [35]. The bound is substituted when besseli does not
produce a finite value. The speaker verification experiments were
conducted with FASTPLDA MATLAB implementation [25]. PLDA
model was used with 300-dimensional speaker and channel latent
variables and 20 iterations were used in training.

4. RESULTS

The mean accuracy and ARI calculated based on 20 random
initialisations for 10, 100 and 500 speakers are reported in Figure 1.
DPVMM and k-means were evaluated on full i-vector features,
and DPGMM on features compressed to 50 and 10 dimensions
using PCA. The k-means solutions were estimated with K = M
to have a baseline that uses a priori information regarding the
data set. Evaluation based on accuracy indicates that DPVMM
solutions are comparable to k-means solutions, whereas DPGMM
solutions are less accurate than k-means and DPVMM solutions in
most conditions. The exception is with the 10 speaker case where
DPGMM with 10-dimensional features resulted in competitive
accuracies. The feature dimension better suited to DPGMM
depends on the dataset: 1) 10-dimensional features resulted in better
DPGMM clusters than 50-dimensional features in the 10-speaker
condition, 2) the 50-dimensional features resulted in better DPGMM
clusters in the conditions with 500 speakers and 3) their performance
very close in the 100 speaker case. ARI has a similar trend but
punishes DPMMs for excess clusters.

Table 1 shows the results for the speaker verification
experiments, where the methods were used to cluster a 650-speaker

1http://github.com/shreyas253/variational NP BMM/

Table 1. Speaker clustering and verification performance.
ACP ASP ACC ARI EER DCF

labelled 1.00 1.00 1.00 1.00 1.67 0.35
k-means 0.61 0.60 0.60 0.55 2.70 0.43
DPVMM 0.52 0.58 0.55 0.40 2.53 0.46
DPGMM 0.13 0.43 0.24 0.01 5.77 0.64

dataset that was used to train PLDA parameters. DPGMM results
are reported with PCA D = 50 which was better than D =

10 for large M . As expected, PLDA trained on clustered data
does not achieve as good performance as the labelled supervised
case. When unsupervised approaches are used, speaker verification
results improve when the cluster solution is improved, so that the
best results are achieved with k-means and DPVMM clustered
data. However, while k-means clusters are evaluated as better than
DPVMM clusters, DPVMM clustered data resulted in lower EER.

The previous experiments used DPVMM and DPGMM with
random initialisation and fixed truncation limit. Experiments with
DPVMM based on random and k-means initialisation at T =

{1000, 2000, 5000} are reported in Table 2. Experiments were
conducted on the 650-speaker dataset, and the truncation limit T
was also used as K in k-means initialisation. The results show
that DPVMM with k-means initialisation (Table 2 (c)) resulted in
better cluster solutions than DPVMM with random initialisation
(Table 2 (b)). However, k-means initialisation also makes DPVMM
results depend on T so that the best results are achieved when
T = 1000, while cluster solutions calculated based on random
initialisation are comparable across T . K-means initialisation was
also tested on DPGMM, but in this case the DPGMM did not update
the solution found by the k-means (Table 2 (a)).

5. DISCUSSION AND CONCLUSIONS

This paper compared variational DPVMM and DPGMM in speaker
clustering and verification task using i-vector features. The
comparison indicates that despite the approximations required to
make variational inference tractable, DPVMM can produce more
accurate speaker clusters than DPGMM. Moreover, while the
DPMM approaches had no information on how many speakers
are represented in the data, DPVMM solutions were able to
compete with the k-means -based reference solutions calculated
using information on the correct number of speakers. While
DPVMM generally performed well, DPGMM solutions were also
comparable to k-means solutions in the 10-speaker condition when
10-dimensional features were used. However in the other conditions,
DPGMM could not model the data properly, and better results
were achieved with DPVMM and k-means. We also observed that
DPVMM performance can be improved with k-means initialisation,
especially when K is close to M .

DPVMMs are expected to model i-vector data better than
DPGMMs since i-vectors are directional (see also [12]), but the
experiments show that this is not the case in the 10-speaker condition
when DPGMM is applied on 10-dimensional data. This indicates
that DPGMMs can model speaker clusters when i-vectors can be
mapped to low-dimensional features without too much information
loss. The observation is in line with previous work, as Shum
et al. [24] also described that GMM-based solutions were better
than or comparable to VMM-based solutions in i-vector-based
speaker-diarisation task with 3-dimensional features and less than
10 speakers. However, low-dimensional features cannot capture

Table 2. Speaker clustering performance of (a) k-means, and
DPVMM with (b) random and (c) k-means initialisation when the
number of k-means clusters equals to the truncation limit (K = T .)

K/T ACP ASP ACC ARI EER DCF
1000 0.75 0.55 0.64 0.60 2.63 0.40

(a) 2000 0.82 0.38 0.55 0.46 2.76 0.38
5000 0.91 0.17 0.39 0.20 2.95 0.36
1000 0.55 0.55 0.55 0.41 2.72 0.46

(b) 2000 0.54 0.58 0.56 0.43 2.57 0.45
5000 0.52 0.58 0.55 0.40 2.54 0.47
1000 0.60 0.66 0.63 0.58 2.47 0.41

(c) 2000 0.53 0.64 0.58 0.51 2.42 0.41
5000 0.50 0.61 0.55 0.43 2.38 0.44

differences between speakers in larger datasets such as datasets
needed to train PLDA parameters. GMM-based models are not
well-suited to model high-dimensional data, unlike VMMs which
handle this well since they work on cosine distance.

Related to comparison between DPGMM and DPVMM
approaches, the DPGMM experiments reported here used full
covariance matrices as proposed in [24]. To evaluate whether
this is a problem when less data is available per speaker, we also
experimented with more constrained covariances. While diagonal
or spherical covariances did not improve the performance, DPGMM
with task-optimised covariance parameters was able to outperform
DPVMM. A fixed concentration parameter could also be used in
the DPVMM, in which case there would be no need to use an
approximation on the variational lower bound. However, it is not
clear how the covariance or concentration parameter should be
optimised, especially in case cluster sizes could be expected to vary.
The current work thus focussed on more flexible solutions.

While evaluation focussed on comparison between estimated
clusters and speaker classes, cluster solutions were also evaluated
in a speaker verification task. These results indicated that when
labelled data is not available, speaker models can be reasonably
estimated based on the k-means or DPVMM solutions. However,
we also observed that EER and DCF cannot be predicted based on
cluster evaluation measures and that the same clustering solution
is not guaranteed to optimise both measures. For example, we
observed the best minimum DCF when the 650-speaker parameter
estimation data was partitioned into K = 5000 clusters with
k-means. This is potentially because DCF emphasises false
acceptance rate which could be easier to minimise when the
observations are oversegmented so that the estimated within-speaker
variation is small. Oversegmentation does not occur with DPVMM
since the number of clusters is inferred based on the observed data.

The current experiments focussed on i-vector data, but
the variational DPVMM updates and MATLAB implementation
presented in this work are expected to handle any high-dimensional
data that can be unit normalised and clustered based on cosine
distance. The variational method can also be easily adapted to work
with very large datasets using SVI [17]. DPVMMs should therefore
make a potential candidate also for other speech clustering tasks such
as the zero-resource systems for under-resourced languages [4].
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Conclusions�

 

•  The comparison indicates that DPVMM can produce more accurate 
speaker clusters than DPGMM. �

•  Even though the Bayesian methods had no knowledge of the correct 
number of speakers, DPVMM solutions were still able to compete with 
the k-means with K corresponding to the correct number of speakers.�

•  DPGMM results are comparable to DPVMM results in the 10-speaker 
case where low-dimensional features can be used. This indicates that 
DPGMMs can model speaker clusters when i-vectors can be mapped to 
low-dimensional features without too much information loss. �

•  For speaker verification, speaker models can be reasonably estimated 
based on the k-means or DPVMM solutions. Also note that EER and 
DCF are not monotonically related to the clustering measures. �

•  The implementation of the DPVMM/DPGMM is available on 
http://github.com/shreyas253/variational NP BMM/ �
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2. METHODS

2.1. Dirichlet process mixture models

DPs can be combined with an observation model to construct
Dirichlet process mixture models [1] where the DP functions as a
prior over the model parameters. The current work studies DPMMs
constructed as follows. The cluster or mixture component that
generated observation xn is indicated with an unobserved variable
zn. These are modelled as samples from a multinomial distribution
⇡ that is constructed based on the stick-breaking process [26]:

⇡k = vk

k�1Y

i=1

(1� vi), (1)

where vk are stick proportions with a beta distribution Beta(1,↵).
This means that the assignment and observation probabilities
associated with observation n can be expressed as

p(zn = k|v) =
1Y

k=1

(1� vk)
1[zn>k]v

1[zn=k]
k , (2)

p(xn|zn,�) =
1Y

k=1

p(xn|�k)
1[zn=k], (3)

where �k are parameter vectors with prior distribution H . The
parameter distributions used in this work are discussed in Sections
2.1.1–2.1.2.

2.1.1. DPVMM

The observations xn considered in this work are i-vectors which
can be modelled as directional data and compared based on cosine
distance [18, 19, 20]. The most common distribution model used
with directional data is the von Mises–Fisher (VMF) distribution [7].
The distribution parameters include mean direction µ (||µ|| = 1)
and concentration parameter � � 0. The observation probabilities
are calculated as

p(x|✓) = �D/2�1

(2⇡)D/2ID/2�1(�)
exp(�µT

x) (4)

where I⌫(u) denotes the modified Bessel function of the first kind
and order ⌫ [27]. I⌫(u) does not have a closed-form representation,
which makes VMF parameter estimation and moment calculation
complicated. Alternative parameter estimates are discussed in
[8, 28] and numerical issues in parameter estimation and likelihood
calculation due to I⌫(u) are discussed in [29].

The current work studies VMF as an observation model in
DPMM. This means that the component-conditioned observation
probabilities p(xn|�k) in Equation (3) are modelled as VMF
distributions with mean direction µk and concentration parameter
�k. The parameters are modelled as unobserved random variables
with prior distribution p(�k) (distribution H). The most common
approach is to choose a distribution that is conjugate to the
likelihood function p(xn|�k). However, the distribution that could
be used as a prior to the concentration parameter has an unknown
normalisation term that makes calculations complicated [13]. Hence
we choose the alternative prior proposed in [11]. The parameter prior
p(�k) = p(µk|�k)p(�k), where p(µk|�k) is a VMF distribution

with mean direction m0 and concentration parameter �0�k, and
p(�k) is a gamma distribution with shape parameter a0 and inverse
scale parameter b0. The prior parameters are modelled as fixed
hyperparameters that encode expectations about the observation
model. The values utilised in this work are reported in Section 3.3.

2.1.2. DPGMM

When Gaussians are used as the observation model, the mixture
model distribution parameters are the mean µk and precision ⇤k

of the Gaussian, as �k = {µk,⇤k}. The prior, H , is chosen
as the conjugate distribution: the normal Wishart distribution
(NW(µ0,0, 0, ⌫0)) [30].

2.2. Variational inference

The complete model derived in the previous section includes latent
variables vk and �k that are associated with mixture components k
and zn that are associated with observations n. Since the posterior
distribution over latent variables in DPMM cannot be determined
in closed form, inference relies on approximate methods. The
current work focusses on variational methods that approximate
the posterior distribution with a tractable distribution called the
variational distribution. The variational distribution is chosen so
that an evidence lower bound (ELBO) can be evaluated under the
variational model, and the variational distribution parameters are
determined as parameters that maximise the bound [31]. Hence
variational methods convert the intractable inference problem into
a conventional optimisation problem.

The DPMM approaches evaluated in this work use the
variational distribution proposed in [6]. The latent variables
vk, �k, and zn are assumed independent and the stick-breaking
representation is truncated at truncation limit T so that the complete
variational distribution

q(z,v,�) =
NY

n=1

q(zn)

T�1Y

k=1

q(vk)
TY

k=1

q(�k), (5)

where q(zn) are multinomial distributions, q(vk) are beta
distributions, and q(�k) have the same parametric form as prior
distributions p(�k). When observations are modelled as DPGMM,
the distribution parameters can be determined with a coordinate
ascent method as proposed in [6]. In practice, coordinate ascent
under the variational model in Equation (5) iterates between updates
to maximise ELBO with respect to q(zn) when q(v) and q(�)
are fixed and updates to maximise ELBO with respect to the
component-conditioned variational distribution parameters when
q(zn) are fixed.

When the observations are modelled as a DPVMM,
direct optimisation is not possible because ELBO includes
E{ln ID/2�1(�k)} which does not have a closed-form expression
under the variational distribution q(�k). A common solution, used
for example in [9], is to include the concentration parameters �k as
hyperparameters so that the troublesome function f(x) = ln I⌫(x)
is constant with respect to the variational model parameters and
E{f(x)} = f(x). The current work utilises the alternative solution
proposed in [11]. The concave function f(x) is upper-bounded
by f(x)  f(a) + f 0

(a)(x � a), where f 0
(a) denotes f 0

(x)
evaluated at linearisation point a. Thus when f(x) is substituted
with its linearisation, coordinate ascent can be used to derive
variational updates that optimise a lower bound to ELBO [11].
Alternative solutions also include sampling the concentration
parameter [10, 16].


