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Goal of the stud Variational Inference Resuts ]

Non-parametric Bayesian methods have recently gained popularity 1n
unsupervised learning. They are capable of simultaneously learning the
cluster models as well as their number based on properties of a dataset.
The most commonly applied models are Dirichlet process Gaussian
mixture models (DPGMMs). Recently, von Mises-Fisher mixture models
(VMMs) have also gained popularity in modelling high-dimensional unit-
normalized features such as text documents and gene expression data.
VMMs are potentially more efficient than GMMs in modeling certain
speech representations such as 1-vector data as they work with unit-
normalized features based on cosine distance. We 1nvestigate the
applicability of DPVMMs for i-vector-based speaker clustering and

verification.
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When the mixture component is Gaussian i.e. 8, ={u,, 2,/
representing the mean and variance parameters. We consider the

* Approximate the analytically intractable posterior with a tractable
distribution called the variational distribution.

* Chosen so that an evidence lower bound (ELLBO) can be evaluated
under the variational model, and the variational distribution
parameters are determined as parameters that maximise the bound.

* lypically done by making some independence assumptions.

* Similar to the expectation—maximisation (KM) algorithm that iterates
between finding the probabilities of z; (called responsibilities) based
on current the model and updating model parameters based the
current responsibilities

Experiments

* The clustering experiments were conducted using DPVMM, DPGMM
and k-means with cosine distance on the NIST SRE 2014
development partition that contains 600-dimensional 1-vector
features extracted from 4958 speakers.

* DPVMM and k-means used observations that were normalised to
unit length; and DPGMM used observations that were compressed

into D = {50,10} dimensions with PCA.

* The clustering methods were evaluated on test datasets that included

M = {10, 100, 500, 650} speakers with most observations.

* Speaker verification experiments were conducted on the complete
dataset using using FASTPLDA, with PLLDA parameters determined
on the 650 speaker dataset.

ACADEMY
OF FINLAND

B k-means
o DPVMM
lr 8 6 = DPGMM 50 |7
_ o M~ o o © DPGMM 10
o - - o v o O
< o © o W
S) o O
E 0.5¢ i
o~ LY
00 ~N ™ N
— o O o
= ~—
- o
.D | = | B [0 e -
10 100 500

M
Fig. 1. Speaker clustering performance with M = {10, 100, 500}

speakers, based on accuracy (bars) and ARI (-).

Table 1. Speaker clustering and verification performance.
ACP ASP ACC ARI EER DCF

labelled 1.00 100 1.00 1.00 1.67 0.35
k-means 0.61 060 060 055 270 043
DPVMM 0.52 058 055 040 253 0.46
DPGMM 0.13 043 024 0.01 577 0.64

Conclusions

conjugate prior 1.e. 'he Normal Inverse Wishart distribution.

Von Mises-Fisher model
VMF models i.e. 8, ={ ,, A} represent the mean and concentration

parameters. The  prior p(&,) = p(u| A p(A,), where p(u,|A,;) is
modelled by a VMF distribution and p(A ;) modelled by a Gamma

distribution

Speaker Clustering

Accuracy as geometric mean of average cluster and speaker purities:
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where s My 1, N are the number of utterances in cluster 7 spoken by
speaker 7, the number of utterances in cluster /, number of utterances

spoken by speaker; and the total number of speakers respectively.

Speaker Verification
* Fqgual Error Rate: calculated at an operation point ¢ where false
acceptance and false rejection errors occur at equal rate

o Minimum Decision Cost Function: Calculated at point  where DCIE(t) 1s
minimum

DCF(t) = FRR() + 100 x FAR(t)

The comparison indicates that DPVMM can produce more accurate

speaker clusters than DPGMM.

Even though the Bayesian methods had no knowledge of the correct
number of speakers, DPVMM solutions were still able to compete with
the k-means with K" corresponding to the correct number of speakers.

DPGMM results are comparable to DPVMM results in the 10-speaker

case where low-dimensional features can be used. This indicates that
DPGMMs can model speaker clusters when 1-vectors can be mapped to
low-dimensional features without too much mmformation loss.

For speaker verification, speaker models can be reasonably estimated
based on the k-means or DPVMM solutions. Also note that KR and

DCF are not monotonically related to the clustering measures.

The implementation of the DPVMM/DPGMM 1is available on
http://github.com/shreyas255/variational NP BMM/
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