
Satellite Synthetic Aperture Radar (SAR) images

• High resolution representations

• Large areas coverage

• Light and weather condition invariability

Typical approach for oil spill detection

• Detection of the dark formations in SAR

• Feature extraction for the dark formations

• Feature classification

• Decision making model for object labeling

Main drawbacks

• Selection of specific features

• Feature extraction is required

• Single label assignment to each input image

• Two-class classification problem

Advantages of using deep convolutional neural networks

• No feature extraction

• Simple extension to a multi-class problem

• No image patches is required

• Robust and accurate solution

• Simple model expansion and modification 

1. Introduction

• A DeepLab1 model variant was deployed

• Backbone model: ResNet-101 model

• The model was redefined, properly trained and fine-tuned 

for oil spill identification.

• Satellite images include large operational amplitudes

❖ R-CNN spatial pyramid pooling (ASPP) method

❖ Cropped images in various sizes to simulate height 

variations

• No CRF due to vague optical limits in SAR images

1Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., &

Yuille, A. L. (2018). Deeplab: Semantic image segmentation

with deep convolutional nets, atrous convolution, and fully

connected crfs. IEEE transactions on pattern analysis and

machine intelligence, 40(4), 834-848.

2. Methodology

• Geographical coordinates for confirmed oil spills were 

provided from European Maritime Safety Agency (EMSA)

• CleanSeaNet service: 28/09/2015 up to 31/10/2017

• European Space Agency (ESA) services for SAR images

• Copernicus Open Access Hub 1

• Training and evaluation set: 571 and 106 images, 

respectively

SAR Data Preprocessing

• Oil spills were localized

• SAR representations were cropped to include objects of 

interest

• Rescale to resolution of 1252x609 “SAR pixels”

• Radiometric calibration

• Speckle filtering to suppress sensor noise

• Additional 7x7 mean filter was applied

• Linear transformation from db to luminosity values

3. Dataset

• Two foreground classes (oil-spills and look-alikes)

• One background class

• Measured performance

❖ Pixel intersection-over-union (IoU) averaged across 

all classes mIoU.

❖ IoU for every class

❖ Image classification accuracy for a number of 

patches cropped from each sample

4. Experimental results

4. Experimental results (cont.)

• New approach for oil spill detection with SAR images

• No similar approach addresses similarly the problem

• Incorporated into a larger detection pipeline

• No feature extraction is required

• Improving the automated oil spill detection

• Utilization of more advanced datasets

• Evaluation of multispectral satellite images

• Fine tuning the existing model

• Test relevant DCNN architectures for both object detection 

and semantic segmentation

4. Conclusions
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5. Future work

SAR images

Intersection-over-Union (IoU)

mIoU Oil spills Look-alikes Background

0.6098 0.4130 0.4564 0.9599

Patch classification precision results
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