THREE-DIMENSIONAL RECONSTRUCTION FROM HETEROGENEOUS VIDEO DEVICES WITH CAMERA-IN-VIEW INFORMATION

Simone Milani

Department of Information Engineering, University of Padova, Italy - simone.milani@dei.unipd.it

1-Overview

In this work, a 3D modelization of the surrounding environment is enabled with an improvised ad-hoc camera networks of both static and mobile devices (cloud vision network).
The estimation can be significantly improved whenever one or more cameras (named here camera-in-views) can be localized within the field of view of other devices.
The locations of camera-in-views (CIV) correspond to both scene points and extrinsic parameters. Image points and synchronization associated to CIV are obtained via a VLC signaling.
As a matter of fact, it is possible to modify a standard bundle adjustment algorithm to improve the accuracy and reduce the amount of iterations. Experimental results show that this additional information can improve the accuracy of the system up to 17%.

3-Synchronization and localization of cameras

The localization of target objects within images can be performed in different ways:

- SIFT descriptors;
- VLC.

In our implementation, the synchronization is obtained using a VLC protocol (it exploits phone screens or vehicle lights).
Feature-based synchronization is possible as well.
The required accuracy depends on the motion level of the cameras.

2-Scenario

 $\mathbf{m}_{k, n}(t) \sim K_{n}\left[R_{n}(t) \mid T_{n}(t)\right] \mathbf{P}_{k}(t)$ $\boldsymbol{\mu}_{h, n}(t) \sim K_{n}\left[R_{n}(t) \mid T_{n}(t)\right] \boldsymbol{\pi}_{h}(t)$
 point $\mathbf{P}_{k}(t)$ and the camer C_{h} are projected on camera C_{n}.

4-Bundle adjustment with camera-in-views

Given a set of points $\mathbf{m}_{k, n}$, the bundle adjustment strategy finds \mathbf{P}_{k}, R_{n}, and T_{n}

$$
\min _{R_{n}, T_{n}, K_{n}, \mathbf{P}_{k} \forall k, n} \sum_{k=0}^{N-1} \sum_{n=0}^{M-1} w_{k, n}\left\|\mathbf{m}_{k, n}-K_{n}\left[R_{n} \mid T_{n}\right] \mathbf{P}_{k}\right\|^{2}
$$

via an iterative two-steps minimization strategy.
If camera-in-views are known (i.e. $\mu_{h, n}$), the target function becomes

$$
\begin{gathered}
\sum_{h=0}^{M-1} \sum_{k=0}^{N-1} \sum_{n=0}^{M-1}\left\{w_{k, n}\left\|\mathbf{m}_{k, n}-K_{n}\left[R_{n} \mid T_{n}\right] \mathbf{P}_{k}\right\|^{2}+\right. \\
\left.\lambda \omega_{h, n}\left\|\boldsymbol{\mu}_{h, n}-K_{n}\left[R_{n} \mid T_{n}\right] \boldsymbol{\pi}_{h}\right\|^{2}\right\}
\end{gathered}
$$

where $\omega_{h, n}$ is equal to 1 in case the camera C_{h} is "in-view" with respect to camera C_{n} and 0 otherwise.

5-Results

Experimental tests were run both on a synthetic setting and on a real one. The first scenario allows us to evaluate the performance of the approach with different camera settings, where N_{T} is the total number of cameras and $N_{C I V}\left(<N_{T}\right)$ the number of camera-in-views available. In the real scenario, we have 3 cameras with 2 CIVs.

Synthetic setting

MSE of 3D points. triangle $=$ no $B A$; square $=B A$; circle=BA-CIV.

Relative MSE improvement.

Real scenario

C_{1} and C_{2}.

C_{0}, C_{1}, and C_{2}.

