HYBRID BEAMFORMING WITH TWO BIT RF
PHASE SHIFTERS IN SINGLE GROUP

1 Problem Statement and Motivation

e Single group multicast beamforming exploits channel state in-
formation (CSI) to steer power effectively to a group of users

subscribing for the same data stream.

e This problem 1s studied mostly using digital beamforming where

a separate RF chain 1s required for each antenna [2].

e Although the full capacity 1s achieved with digital beamforming,

its cost and complexity are high.

e In this paper, we propose a special TWO BIT hybrid beamform-
ing structure as shown in Fig. 1 to decrease hardware cost while
maintaining comparable performance with respect to the com-

pletely digital beamformer [4], [5].

2 Contributions

e This 1s the first work which considers hybrid beamforming for

single group multicasting.

e A special problem formulation i1s derived for two bit RF phase
shifters which leads to simplicity, low cost and effective solution.

e The combinatorial optimization problem 1s converted to a contin-

uous programming formulation.
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Fig. 1. Hybrid Beamforming System

3 System Model
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4 QoS-Aware Hybrid Beamforming

e Quality of service (QoS) aware multicast beamforming problem
1s to minimize the total transmitted power subject to received

SNR constraint for each user, 1.e.,

min ww

weCLM

st. wiRyw > yeok, k=1,..,N

€{1,j,-1,—j}, m=2,..,M,1=1,..,L

Wi, m

R, = h;hi

w1

additive noise uncorrelated
with the information signal with

MULTICASTING

Ozlem Tugfe Demir, T. Engin Tuncer

Electrical and Electronics Engineering Department,
Middle East Technical University, Ankara, Turkey

{deozlem, etuncer}@metu.edu.tr

e The above problem 1s not convex and has a combinatorial nature.

min Tr{W}
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st. Tr{RxW} > yoi, k=1,..,N
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e The optimization problem in (4) is still nonconvex due to (4.c)
and (4.e).

e The following lemma 1s used to express the discrete constraints
in (4.c) in terms of continuous variables.

Lemma 1: The constraints in (4.c) can be expressed as linear
equality and inequalities as follows,
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e When (4.c¢) 1s replaced by (5), the optimization problem in (4)
can be solved using semidefinite relaxation (SDR) by dropping
the rank condition [7].

e In SDR, rank one solution i1s not guaranteed, and it may return
unacceptable solutions in certain problems including (4).

e In our previous work [6], an effective approach 1s presented for
the semidefinite programming problems with rank one constraint.

S Equivalent Problem

e The following lemma 1s used to express rank constraint in a
quadratic form.

Lemma 2: For a Hermitian symmetric, positive semidefinite ma-
trix W, the condition in (6) necessitates W being a rank one matrix.

(Tr{W})* = Tr{W?*} <0 (6)

e Using Lemma 2, the rank constraint in (4.e) can be replaced by

(6).

e The only nonconvex constraint (6) can be moved into the objec-
tive function using exact penalty approach [8].

Lemma 3: ([12], page 487): The problem in (4) is equivalent
to the problem in (7) for © > po with po being a finite positive
value 1n the sense that any local minimum of the problem in (4),
which satisfies the second order sufficiency conditions, is also a local
minimum of the problem in (7).

min  Tr{W} + pmax(0, (Tr{W})* — Tr{W?}) (7)
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s.t. (4.b), (4.d), (5.a), (5.b), (5.¢)

e (7) can be expressed as,

min
WeCLMXLM

s.t. (4.b), (4.d), (5.a), (5.b), (5.c)

Tr{W} + u((Tr{W})* = Tr{W"})  (8)

6 Alternating Minimization Algorithm

Hybrid Beamforming Algorithm (HBA)

Let Aynaz (W) be the maximum eigenvalue of the matrix W,
Initialization: £ = 0,

Solve (9) for W? while fixing W~ as zero matrix. Set a proper /.

Iterations: £ = Lk + 1

1) Solve (9) for W* while fixing W*=1, If rank(W¥) = 1 go to

step 4.
: k—1
welin Tr{W} + u(Tr{W"""}Tr{W}
~Tr{W*'W}) 9)
s.t. (4.b), (4.d), (5.a), (53.b), (5.¢)
2) If Amaz (W) > Amaz (WH=T) (improved solution), where

Tr{wk} — Tr{Wk-1}
8 > 1 1s a proper positive threshold value (Ex: 1.5), keep the value
of p same. Otherwise, increase p (Ex: p — 2u)

3) Terminate if the maximum iteration number, k£ =
reached.

End:

4) If rank(W¥*) = 1, take the beamformer weight vector as the
principal eigenvector of the matrix W*. Otherwise, select the
elements of the beamformer weight vector as,
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where 6(Z(W},(m, 1)/W{,(1,1))) is the quantized angle such that
(LW (m,1)/WF(1,1))) € {0,7/2, 7,37 /2}.

5) If necessary, scale w properly such that all SNR constraints are
satisfied.

7 Simulation Results

e The minimum SNR threshold=-;. = 10.

e Noise Variancezai = 1.
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Fig. 2. Transmitted power for different number of RF chains and

users for an array of LM = 32 antennas.

e Two bit hybrid beamformer 1s an effective structure to decrease

the number of RF chains.

Comparison of Full Digital, Full Analog and Two Bit Hybrid Beam-

formers for the Number of RF Chains
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Fig. 4. Transmitted power for different number of RF chains and

phase shifters for N = 12 users.



e [, = 2 RF chain with M = 8 phase shifters per RF chain, has
better performance than full digital beamformer with . = 4 RF
chains.

Comparison with Antenna Selection
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Fig. 5. Comparison of hybrid beamforming and antenna selection in
terms of transmitted power.

e Hybrid beamforming results significant power saving with the
use of cost efficient and simple two bit phase shifters.

CONCLUSIONS

e In this paper, a special hybrid beamforming structure 1s proposed
for single group multicasting and the joint design of analog and
digital beamformers 1s considered.

e The combinatorial optimization problem is converted to a
quadratic-cost problem with linear constraints over a semidefi-
nite matrix.

e The proposed method is efficient in terms of both hardware com-
plexity and the performance.

e Simulation results show that it 1s a good low-cost alternative to
full digital beamforming.

e The proposed method designs hybrid beamformer effectively and
it performs better than antenna selection.
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