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Outline

• Mathematical modeling of cardiovascular and respiratory
systems

• Problem formulation of cardiorespiratory control mechanism

• Proposed optimal control algorithm

• Experimental results

• Conclusions
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Introduction

• Noncommunicable diseases like cardiovascular and respiratory
diseases are one of the major leading causes of death in the
world.

• Mathematical models of the underlying physiological systems
will greatly help in providing more diagnostic information.

• They quantify the complex interactions between several
systems, and can be used to predict certain diseases in
advance which alter the normal system function.
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Related Work

• Grodins models the cardiovascular system using a feedback
regulator.1

• The cardiovascular system is divided into two subsystems: a
controlling system (containing medullary cardiac and
vasomotor centers, and endocrine glands which operate on the
heart and blood vessels) and a controlled system (containing
mechanical and gas exchange elements).

• Guyton et al. develop a system model of the circulatory
regulation by dividing the circulatory system into 18 major
subsystems such as circulatory dynamics, capillary membrane
dynamics, pulmonary dynamics, vascular stress relaxation,
etc.2

1F. S. Grodins, “Integrative cardiovascular physiology: a mathematical
synthesis of cardiac and blood vessel hemodynamics,” The Quarterly Review of
Biology, vol. 34, no. 2, pp. 93-116, 1959.

2A. C. Guyton, T. G. Coleman, and H. J. Granger, “Circulation: overall
regulation,” Annual Review of Physiology, vol. 34, pp. 13-46, 1972.
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Related Work

• Kappel and Peer develop a model of the response of the
cardiovascular system to constant workload on a person after
a period of complete rest.3

• In this process, the baroreceptor control loop plays a central
role. This local control mechanism is modeled using the four
compartment model of the cardiovascular system.

• Aittokallio et al. develop a model of the respiratory control
system, which describes the gas exchange between pulmonary
blood, tissue capillary blood, venous blood and tissue
compartments.4

3F. Kappel and R. O. Peer, “A mathematical model for fundamental
regulation processes in the cardiovascular system,” Journal of Mathematical
Biology, vol. 31, pp. 611-631, 1993.

4T. Aittokallio, M. Gyllenberg, O. Polo, and A. Virkki, “Parameter
estimation of a respiratory control model from noninvasive carbon dioxide
measurements during sleep”, Mathematical Medicine and Biology, vol. 24, no.
2, pp. 225-249, 2007.
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Related Work

• Batzel et al. model the cardiovascular-respiratory control
system with transport delays.5

• The cardiovascular and respiratory control systems are
modeled by a linear negative feedback control which minimizes
a quadratic cost function denoting an optimal system
performance.

5J. J. Batzel, S. Timischl-Teschl, and F. Kappel, “A
cardiovascular-respiratory control system model including state delay with
application to congestive heart failure in humans”, Journal of Mathematical
Biology, vol. 50, no. 3, pp. 293-335, 2005.
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Proposed Model

• Local control mechanisms (baroreceptor control loop and
respiratory control loop) play a key role in stabilizing the
cardiovascular-respiratory system under different conditions.

• Here, we focus on modeling these control mechanisms as the
human body goes from awake state to stage 4 non-REM sleep
state.

• We formulate this mechanism as an optimal control problem.
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Proposed Model

• Limitations of existing models:
• The cardiovascular-respiratory system model is nonlinear.

Batzel et al. solve this optimal control problem by linearizing
the system at the final sleep steady state.

• However, linearizing the system at just one point is not
optimal. Moreover, it is difficult to know the final sleep steady
state values of all the states in practice.

• Challenges:
• The system model is nonlinear and involves time delay.
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Our Approach

• We propose an iterative algorithm to solve the optimal control
problem.

• We initially start with a nominal state and input sequences,
and iteratively update these sequences to get the final optimal
sequences.

• In each iteration, the system is linearized with the sequences
obtained from the previous iteration. Using the linearized
system, we formulate the optimal control problem as a convex
optimization problem and solve it using interior-point
methods.
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Cardiorespiratory System Model

• We adopt the cardiovascular-respiratory system model used by
Batzel et al. [5].

• The model is described by a set of 13 delay differential
equations. The delay represents the transport delay between
the cardiovascular and respiratory systems.

• The model has 13 state variables and 2 control input variables:

x(t) = [PaCO2(t), PaO2(t), CvCO2(t), CvO2(t), Pas(t), Pvs(t),

Pvp(t), Sl(t), Sr(t), σl(t), σr(t), H(t), V̇A(t)]T ,

u(t) = [Ḣ(t), V̈A(t)]T .

• The transition from an awake state to stage 4 non-REM sleep
state can be modeled by stabilizing PaCO2 , PaO2 , and Pas
states.
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Model Block Diagram
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Optimal Control

• We formulate the optimal control problem that transfers the
cardiorespiratory system from awake to sleep steady states as,

u?(t) = arg min
u

∫ tf

t0

(
q1(x1(t)− x̄1)2 + q2(x2(t)− x̄2)2+

q5(x5(t)− x̄5)2 + r1u
2
1(t) + r2u

2
2(t)
)
dt,

subject to the system model:

ẋi(t) = Fi(x(t),x(t− τ)) + bTi u(t), t ∈ [t0, tf ],

x(t) = x0(t), t ∈ [t0 − τ, t0],
u(t) ≤ 0,

where i = 1, 2, ..., 13, x̄i is the final steady state value of state
i, x0(t) is the given initial history, qi and rj ’s are positive
coefficients that assign weight to the state and input terms in
the above cost function.
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Discrete-time Optimal Control

• For ease of optimization, we first discretize the system using the
first-order Euler approximation as,

xi[k + 1] = gi (x[k],x[k − a],u[k])

= xi[k] + hFi (x[k],x[k − a]) + hbT
i u[k].

• Using this discrete-time system, we reformulate the optimal control
problem as,

min
U

N−1∑
k=0

(x[k]− x̄)
T
Q0 (x[k]− x̄) + u[k]TR0u[k]

+ (x[N ]− x̄)
T
Q0 (x[N ]− x̄)

s.t. x[k + 1] = g (x[k],x[k − a],u[k]) , u[k] ≤ 0,

where N =
tf−t0

h , U = {u[0],u[1], ...,u[N − 1]} is the optimal
control input sequence, x̄ = [x̄1, x̄2, 0, 0, x̄5, 0, ..., 0]T , Q0 is a
13× 13 diagonal matrix with [q1, q2, 0, 0, q5, 0, ..., 0]T as its main
diagonal, and R0 is a 2× 2 diagonal matrix with [r1, r2]T as its
main diagonal. 13
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State Augmentation

• We further convert the higher order difference equations into
first-order difference equations by augmenting the states
{x[k],x[k − 1], ...,x[k − a]} to construct a new state vector
as,

z[k] =
[
x[k]T ,x[k − 1]T , ...,x[k − a]T

]T
.

• With this new state vector, the system can be written as,

zi[k + 1] = fi (z[k],u[k]) = gi (z[k],u[k]) , i = 1, 2, ..., 13,

zi[k + 1] = fi (z[k],u[k]) = zi−13[k], i = 14, ..., 13(a+ 1).
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Iterative Linear Quadratic Regulator

• The constraint, z[k + 1] = f (z[k],u[k]), is nonlinear. This
makes the optimal control problem nonconvex.

• For Iteration 0, set initial nominal sequences u0[k] and z0[k].
The system is first linearized around these nominal sequences
as,

δz[k + 1] = Ak δz[k] + Bk δu[k],

where δz[k] = z[k]− z0[k], δu[k] = u[k]− u0[k],
Ak = ∇z f (z0[k],u0[k]) and Bk = ∇u f (z0[k],u0[k]).
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Optimal Control Problem

• We reformulate the optimal control problem as,

min
δU

J̃ =

N−1∑
k=0

1

2
(δz[k]− δz̄[k])T Q (δz[k]− δz̄[k])

+
1

2
(δu[k]− δū[k])T R (δu[k]− δū[k])

+
1

2
(δz[N ]− δz̄[N ])T Q (δz[N ]− δz̄[N ])

s.t. δz[k + 1] = Ak δz[k] + Bk δu[k],

u0[k] + δu[k] ≤ 0,

where δz̄[k] = z̄− z0[k], δū[k] = −u0[k], and
δU = {δu[0], δu[1], ..., δu[N − 1]}.

• We use interior-point methods to solve the above convex
problem.
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Nominal Sequences Update

• After computing the optimal δu[k], we update the nominal
input sequence as,

u[k] = u0[k] + δu[k], k = 0, 1, ..., N − 1.

• To update the nominal state sequence, we simulate the
nonlinear system, z[k + 1] = f (z[k],u[k]), with the above
updated nominal input sequence.
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Optimal Control Algorithm

• Initialize: u(0)[k] = 0, z(0)[k + 1] = f
(
z(0)[k],u(0)[k]

)
,

k = 0, 1, ..., N − 1.

repeat
Find the optimal δu[k].

Input update: u(i)[k] = u(i−1)[k] + δu[k].

State update: z(i)[k + 1] = f
(
z(i)[k],u(i)[k]

)
.

until
||J(i) − J(i−1)||2 < ε
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Experimental Results

• We first calculate the steady state values of all system states
in both awake and sleep stages by running the discrete-time
system for a long period of time with zero control inputs.

x̄a = [39.0974, 103.4, 0.5563, 0.1273, 104.5, 3.515,

7.857, 61.54, 4.691, 0, 0, 75, 5.736]T ,

x̄s = [51.0767, 89.1, 0.6386, 0.1187, 91.23, 3.788,

7.742, 55.79, 4.253, 0, 0, 68, 4.392]T .

• The transition of the cardiovascular-respiratory system from
awake to sleep states is modeled by stabilizing the states
PaCO2(t), PaO2(t), and Pas(t) to their corresponding sleep
steady state values: x̄1 = 51.0767, x̄2 = 89.1, x̄5 = 91.23.
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Optimal Control Input Sequences
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Optimal State Trajectories
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Real State Trajectories

• To validate our simulation results, we collected real data from
a healthy 25-year-old male subject using Hexoskin biometric
smart shirt.

• The measured physiological signals of the subject during
awake to sleep transition are shown below.
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Conclusions

• In this paper, we studied how to model the control mechanism
of the cardiovascular-respiratory system during the transition
from an awake state to stage 4 non-REM sleep state.

• A cardiovascular-respiratory system model with transport
delays is adopted.

• An iterative algorithm is proposed to find the optimal control
inputs that drive the cardiovascular-respiratory system from
awake state to sleep state.

• Simulation results show the effectiveness of the proposed
method. The system states converge close to their sleep
steady state values.

• Comparison with real physiological signals shows that the
control mechanism model can catch the system dynamics of
the subject from awake to sleep state.
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