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Introduction

https://hvmn.com/biohacker-guide/cognition/eeg-measures-of-cognition

What is EEG?
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EEG Microstates (EEG-ms)

• Brain goes into many local functional states can be

said to be in one particular global functional state at

each moment in time

• Brain experiences quasi-stability states that are

followed by rapid changes over-time

• Brain states, if measured as EEG, are electric

potential landscapes

• Electric potential landscapes generated by different

distributions of neural electric activity in the brain, it

is reasonable to assume that different microstates

embody different functions of the brain
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D Lehmann et al, Scholarpedia

4, 7632 (2011)
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EEG-ms Analysis vs. Traditional EEG analysis

• Traditional Analysis:

• EEG amplitude, power and

phase modulation of EEG

waveforms are local measures

that vary with references

• EEG amplitude and power vary

at each time point, while phase

varies at each electrode
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Introduction

• EEG-ms:

• EEG-ms are reference-free global

measurements

• Stable for relatively long time (60-

120 ms)

• Reduces the complexity of EEG by

looking number of topographies

• Multichannel and broadband

measure



Canonical EEG-ms

• EEG-microstates in resting state

• Koenig et al.2002∗ identified four

microstate classes in the spontaneous

EEG from 496 healthy subjects (6 to 80

year-olds)

• The mean duration of the microstates is

80-100 ms and varies with age

• Head seen from above, nose up; red

positive, blue negative potential areas
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Introduction

T Koenig et al, Neuroimage 16, 41 (2002)

*T Koenig et al, Neuroimage 16, 41 (2002)



𝑋𝑡 =෍

𝑖=1

𝐾

𝑎𝑖𝑡𝑇𝑖 + 𝜖𝑡

To allow for non-overlapping microstates at each time point 𝑡,all 𝑎𝑖𝑡 must

be zero except for one.

𝑎𝑙𝑡𝑎𝑚𝑡 = 0 ∀𝑙 ≠ 𝑚

෍

𝑖=1

𝐾

𝑎𝑖𝑡
2 > 0, ∀𝑡

• 𝑋𝑡: EEG signal at time point t

(𝐶 × 1), with C is the number

of channels

• K: the number of microstate

• 𝑎𝑖𝑡 :intensity applied at each

time point

• 𝑇𝑖: microstate (𝐶 × 1), with C

is the number of channels.

• 𝜖𝑡: error term for time point t

Mathematical Assumptions of EEG-ms
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Methods: General Assumption of EEG 



Polarity Invariant Property of EEG-ms
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Methods: General Assumption of EEG 

𝑥 =
𝑥1
⋮
𝑥𝑝

ҧ𝑥 = −𝑥 =
𝑥1
⋮
𝑥𝑝

Same Microstates



Extracting EEG-ms algorithm :

Step1: Set K, X

Step 2: Initialize K random MSs 

𝑇𝑖 𝑤𝑖𝑡ℎ 𝑖 = 1. . 𝐾

Step 3:Normalizing EEG MSs such that:

𝑇𝑖 = 1 and  (𝑇𝑖
′𝑇𝑗)

2 < 1 𝑓𝑜𝑟 𝑖 ≠ 𝑗

Step 4: Assign labels

𝐿𝑀×1 = 𝑎𝑟𝑔𝑚𝑎𝑥{(𝑋′𝑇)2}

Step 5: Update MSs Templates 
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Methods: Extracting EEG-ms

Step 5: Update MSs Templates 

For i=1..K

a. 𝑆𝑖 = 𝑋𝑖𝑋𝑖
′ with 𝑋𝑖 EEG points 

that belongs to MS 𝑖

b. 𝑇𝑖=𝑎𝑟𝑔𝑚𝑎𝑥𝑋𝑡 {𝑋′𝑡𝑆𝑖𝑋𝑡}

Step 6: Calculate the explained variance 

𝜎𝐷
2 = (෍

𝑖=1

𝑀

(𝑋′
𝑖
𝑋𝑖)

2)/(𝐾(𝑀 − 1))

𝜎𝑢
2 = 𝜎𝐷

2 − (෍

𝑖=1

𝑀

𝑇𝑖
′𝑋𝑖

2) /(𝐾(𝑀 − 1))

𝑅2 = 1 − 𝜎𝑢
2/𝜎𝐷

2

Step 7: Repeat step 4 through step 7 until 𝑅2 is 
large enough



Motivation

1. EEG-ms is a polarity invariant analysis, and thus it requires special

handling for identifying the microstates

2. Thus, transforming the EEG time points into a new space will

alleviate the challenges of handling the polarity of EEG

3. Also, it allows using general clustering algorithms to identify

microstate templates

4. All results are compared to two commonly used algorithms modified-

k-mean and AAHC*
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Methods: Polarity Invariant Transformation

*C. M. Michel and T Koenig, NeuroImage 188, 577 (2017)



Suggested Solution

1. The transformation of EEG signals is achieved by mean of kernel

concept

2. While there are many types of kernels, to best of our knowledge, the

literature does not provide a kernel with polarity invariant property

3. Thus, we provide here our derivation for the proposed kernel. The

kernel is deployed using Kernel-PCA (KPCA) paradigm*

4. With kernel transformation, the data are transformed using non-linear

and polarity invariant kernel into a new space such that EEG points that

represent similar EEG microstates will become closer to each other,

while points that belong to different EEG microstates will spread out
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Methods: Polarity Invariant Transformation

*F. von Wegner et al, Neuroimage 158, 99 (2017)



• EEG signals 𝑿 with 𝒏 time points such that 𝑿 = {𝒙𝒊 } with 𝒊 = 𝟏,… , 𝒏 and 𝒙𝒊
is an 𝒑 dimensional vector corresponding to the number of channels in EEG.

1

𝑛
෍

𝑖=1

𝑛

Φ 𝑥𝑖 = 0 𝐄𝐪. 𝟑. 𝟏

𝐶 =
1

𝑛
෍

𝑖=1

𝑛

Φ(𝑥𝑖)Φ(𝑥𝑖)
𝑇 (𝐄𝐪. 𝟑. 𝟐)

𝐶𝑣𝑘 = 𝜆𝑘𝑣𝑘 (𝐄𝐪. 𝟑. 𝟑)

𝐶𝑣𝑘 =
1

𝑛
෍

𝑖=1

𝑛

Φ(𝑥𝑖)Φ(𝑥𝑖)
𝑇𝑣𝑘 = 𝜆𝑘𝑣𝑘 (𝐄𝐪. 𝟑. 𝟒)

𝑣𝑘 =෍

𝑖=1

𝑛

𝑎𝑖 Φ 𝑥𝑖 (𝐄𝐪. 𝟑. 𝟓)

𝐶𝑣𝑘 =
1

𝑁
෍

𝑖=1

𝑛

Φ(𝑥𝑖)Φ(𝑥𝑖)
𝑇෍

𝑗=1

𝑛

𝑎𝑖 Φ 𝑥𝑗 = 𝜆𝑘෍

𝑖=1

𝑛

𝑎𝑖 Φ 𝑥𝑖 (𝐄𝐪. 𝟑. 𝟔)

Polarity Invariant Kernel PCA
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Methods: Polarity Invariant Transformation



Polarity Invariant Kernel PCA, cont’d,

𝒦 𝑥𝑖 , 𝑥𝑗 = Φ 𝑥𝑖 Φ 𝑥𝑗
𝑇

(𝐄𝐪. 𝟑. 𝟕)

1

𝑁
𝒦 𝑥𝑖 , 𝑥𝑗 ෍

𝑗=1

𝑛

𝑎𝑖 𝒦 𝑥𝑖 , 𝑥𝑗 = 𝜆𝑘෍

𝑖=1

𝑛

𝑎𝑖 𝒦 𝑥𝑖 , 𝑥𝑗 (𝐄𝐪. 𝟑. 𝟖)

Κ2𝛼 = 𝜆𝑘𝑁Κ𝛼 (𝐄𝐪. 𝟑. 𝟗)

𝑦𝑘 𝑥 = Φ(𝑥)𝑇𝑣𝑘 =෍

𝑖=1

𝑛

𝑎𝑖𝒦 𝑥, 𝑥𝑗 (𝐄𝐪. 𝟑. 𝟏𝟎)

෩Κ = Κ − 1𝑛Κ − Κ1𝑛 + 1𝑛Κ1𝑛 (𝐄𝐪. 𝟑. 𝟏𝟏)
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Methods: Polarity Invariant Transformation



A kernel with polarity invariant derivation

𝒦 𝑥, 𝑦 = 𝒦 𝑥,−𝑦 𝐄𝐪. 𝟑. 𝟏𝟐

We rely on using a gaussian kernel  with Euclidean distance.

𝒦 𝑥, 𝑦 = exp −𝛾𝑑 𝑥, 𝑦

But we need a distance function such that:

𝑑 𝑥, 𝑦 = 𝑑 𝑥,−𝑦 (𝐄𝐪. 𝟑. 𝟏𝟑)

One suggestion is :

𝐷 𝑥, 𝑦 = min 𝑑 𝑥, 𝑦 , 𝑑 𝑥,−𝑦 (𝐄𝐪. 𝟑. 𝟏𝟒)

𝐷 𝑥, 𝑦 = min[ 𝑥 − 𝑦 2 , 𝑥 + 𝑦 2] (𝐄𝐪. 𝟑. 𝟏𝟓)

= min[−2𝑥1𝑦1 − 2𝑥2𝑦2 −⋯− 2𝑥𝑝𝑦𝑝,

14

Methods: Polarity Invariant Transformation

𝑥 =
𝑥1
⋮
𝑥𝑝

𝑦 =
𝑦1
⋮
𝑦𝑝



Demo for the transformation in 3D
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Results: Polarity Invariant Transformation



Results
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Results: Polarity Invariant Transformation

Explained Variance 

Comparison from 10 healthy 

resting-state EEG (8 min)

Topography Comparison 



Results
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Algorithm Execution time per subject 

(sec)

Modified-K-means 7

AAHC 23.3

PI-KPCA 3.3

Results: Polarity Invariant Transformation

The effect of the 

number of PCs

Execution time



Conclusion

• We have introduced a new transformation to identify the EEG Microstates by

applying a nonlinear transformation with polarity invariant property

• The transformation relies on KPCA with a particular

• We have also demonstrated in our demo example how the transformation works

using a synthetic data in 3D dimension

• Our testing has shown that the proposed that transformation work very well and

can improve upon the most common EEG Microstates algorithms namely,

modified-k-means and HAAC

• It can be shown that from the figure that PI-KPCA based algorithm always

outperform other algorithms

• The topographies of the extracted microstates from AAHC and modified-k-

means are highly similar and indicates that the identified microstates are similar

to each other
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Conclusion
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Questions ?
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Global Field Power (GFP) Extraction Steps:

1. Average Reference data

2. Calculate GFP:

𝐺𝑃𝐹 =
σ𝑖=1
𝑛 ( 𝑥𝑖 𝑡 − ҧ𝑥(𝑡))2

𝑛

• With 𝑥𝑖 𝑡 is electrode voltage value at time point t and ҧ𝑥(𝑡) is mean 
of electrodes voltages at that time point

3. Peak detection

• We select randomly n Maps (for later we call it K)

4. Store electrodes information at each peak

• We call it 𝑋 such that 𝑋 = 𝐶 ×𝑀

21

Repeat this for 

individual subjects 

Supplementary (1)
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GPF Peak Detection 
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Supplementary (2)



𝐶

𝑀

X

Data organizing for the algorithm
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Algorithm 1:

Step1: Set K, X

Step 2: Initialize K random MSs 

𝑇𝑖 𝑤𝑖𝑡ℎ 𝑖 = 1. . 𝐾

Step 3:Normalizing EEG MSs such that:

𝑇𝑖 = 1 and  (𝑇𝑖
′𝑇𝑗)

2 < 1 𝑓𝑜𝑟 𝑖 ≠ 𝑗

24

𝑋 = 𝐶 ×𝑀

𝑇 = 𝐶 × 𝐾

Supplementary (4)



Algorithm 1: cont’d

Step 4: Assign labels

𝐿𝑀×1 = 𝑎𝑟𝑔𝑚𝑎𝑥{(𝑋′𝑇)2}

Step 5: Update MSs Templates 

For i=1..K

a. 𝑆𝑖 = 𝑋𝑖𝑋𝑖
′ with 𝑋𝑖 EEG points that belongs to 

MS 𝑖

b. 𝑇𝑖=𝑎𝑟𝑔𝑚𝑎𝑥𝑋𝑡 {𝑋′𝑡𝑆𝑖𝑋𝑡}

Step 6: Calculate the explained variance 

𝜎𝐷
2 = (෍

𝑖=1

𝑀

(𝑋′
𝑖
𝑋𝑖)

2)/(𝐾(𝑀 − 1))

𝜎𝑢
2 = 𝜎𝐷

2 − (෍

𝑖=1

𝑀

𝑇𝑖
′𝑋𝑖

2) /(𝐾(𝑀 − 1))

𝑅2 = 1 − 𝜎𝑢
2/𝜎𝐷

2

Step 7: Repeat step 4 through step 7 until 𝑅2 is large enough
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𝑋 = 𝐶 ×𝑀

Repeat this for
individual subjects !!!

𝑇 = 𝐶 × 𝐾

Supplementary (5)

0.55 0.6 0.7
0.89 0.3 0.8
0.54 0.69 0.49

0.57 0.33 0.95
⋮ ⋮ ⋮
0.1 0.89 0.75

0.15
0.33
0.96

0.66
⋮

0.05

3
1
4

3
⋮
2

Example of assigning labels (K=4)

Only positive terms ! 



Output of the previous steps:
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MSs for Subj 1

MSs for Subj 2

Supplementary (6)


