DEEP LEARNING BASED AUTOMATIC VOLUME CONTROL AND LIMITER SYSTEM

Jun Yang, Philip Hilmes, Brian Adair, and David W. Krueger

Amazon Lab126, Sunnyvale, CA 94089, USA

Overview

- Automatic Speech Recognition (ASR) enabled smart speaker is the killer application.
- Volume Control (VC) is a key part in ASR based smart speakers.
- Existing VC methods are designed independently and hence result in poor audio quality and ASR performance.
- Driven by audio contents, a novel automatic VC (AVC) and limiter algorithm is proposed.
- Trained by wake-up word (WW) model in deep neural network (DNN) machine learning platform.
- Integrated with acoustic echo cancellation (AEC).
- Adaptively learns and tracks an effective signal level at the speed corresponding to the width of transient sound.
- No peak will go over the predetermined peak threshold. No clipping and harmonic distortion.
- Optimal ASR performance and audio quality can be achieved.

The Proposed AVC and Limiter Algorithm

Audio Varandemi
modesta positive paradical
positive paradical
desired corrections

Gain Corre

1.0

Lond
About
About
Sales

Sales

Sales

Sales

Fig. 1 Data-Driven Open-Loop AVC Alg.

Fig. 2 Gain Curve of Limiter Alg.

- Look-ahead Buffer: a circular buffer to store a block of audio samples
- Time Constant Determination: audio content-driven approach
- Signal Event/Silence Detection: SNR-based Approach
- Signal Level Estimation:

$$G(n) = \frac{1}{N} \sum_{i=0}^{N-1} (x(n,i))^{2}$$

$$S(n) = S(n-1) + \xi (G(n) - S(n-1))$$

 ξ is attack time if G(n) > S(n-1); otherwise, ξ is release time.

Wake-up Word Recognition Performance

Correct Rate of Wake-up Word Detection versus Playback Volume. More green bars represent better ASR performance.

Fig. 3 Traditional AVC and Limiter (3ft)

Fig. 4 The Proposed AVC and Limiter (3ft)

Fig. 6 The Proposed AVC and Limiter (6ft)

Audio Performance

Fig. 7 Input Audio Waveform

Fig. 8 Output Waveform Processed by Traditional AVC and Limiter

Fig. 9 Output Waveform Processed by the Proposed AVC and Limiter

No audible breathing artifacts, more dynamic range, more natural listening experience and balanced sonic experience than traditional AVC and Limiter.

Features of the Proposed AVC and Limiter Alg.

- Audio content deep learning and data-driven features,
- Performs WW model training and statistic metric calculation for each audio feature,
- Clipping-free, very low latency,
- Very low MIPS,
- Natural listening and balanced sonic experience,
- No audible volume fluctuation during user's adjusting volume.
- Can serve as efficient post-processor for many audio/voice related applications and device.