A CONSTRAINED ADAPTIVE SCAN ORDER APPROACH TO TRANSFORM COEFFICIENT ENTROPY CODING

Coding of Transform Block Coefficients

- Use a scan order to code transform block coefficients sequentially.
- Code an end-of-coefficient token after last non-zero coefficient in the scan order.
- The rest of zero coefficients can be skipped.

coded position

end of coefficient position

non-coded position

72 -> 24 -> 30 -> 0 ->4 -> 2 -> eob

Motivation

- Arrange most zero coefficients to the tail.
 - The end-of-coefficient token will allow us to ignore zero coefficients in the tail.
- Transform block statistics are different across different video clips.
 - Using a predefined scan order will waste bits in coding zero coefficients.
 - An adaptive approach is needed.

Context Dependency

- How about we design an adaptive scan order merely by sorting the non-zero probabilities of positions in transform blocks?
- The above/left coefficient context dependency is applied in entropy coding to exploit the remaining inter-coefficient correlations.
- The scan order obtained from sorting the non-zero probabilities may have conflict with the context dependency.

Topological Sort - Example

 By applying topological sort, one can generate a scan order that mostly follows the descending order of non-zero probabilities without violating the context dependency.

Pe[i][r][c] 0.7 0.58 0.8 0.6 0.71 0.72 0.65 0.2 0.1 Sort Pe[i][r][c] Draft scan index of the draft scan order 6 3 0 2 5 + 4 8

Coefficient index

0	1	2
3	4	5
6	7	8

DAG of coefficient context dependencies Scan index of adaptive scan order

Apply topological

sort with draft scan order and context

Topological Sort - Resolve Context Conflict

without context conflict

with context conflict

					-		-	-			-		-				-	-			
<i></i>	0.8	0.71	0.58	0.8	0.71	0.58		0.8	0.71	0.58		0.8	0.71	0.58	0.8	0.71	0.58		0.8	0.71	0.58
estimating non-zero	0.7	0.72	0.6	0.7	0.72	0.6		0.7	0.72	0.6		0.7	0.72	0.6	0.7	0.72	0.6		0.7	0.72	0.6
probability	0.65	0.2	0.1	0.65	0.2	0.1		0.65	0.2	0.1		0.65	0.2	0.1	0.65	0.2	0.1		0.65	0.2	0.1
									I												
	+ ►0			0				0-	+ +1			0	1		0	1			0	1	5
scan order					*							+2 −	*		2 —	+3			2	3	6
																			4	7	8

Estimation of Non-zero Probabilities of Transform Coefficients

- The cost of transmitting non-zero probabilities or the adaptive scan order from encoder to decoder is impractically large
- Moving window estimation
 - Estimate non-zero probabilities of transform block coefficients for i-th frame.
 - Non-zero coefficient counts and number of transform blocks
 - C[i 1][r][c]
 - $\blacksquare \quad M \rightarrow \text{ number of transform blocks}$
 - Observed non-zero probabilities
 - P c [i 1][r][c] = C[i 1][r][c]/M
 - per-frame update
 - Estimating non-zero probabilities
 - Pe [i][r][c] = (1 k) * Pe [i 1][r][c] + k * Pc [i 1][r][c]
 - per-frame update

Performance

- Coding gains (BDRate) over predefined scan order scheme on VP9
 - Low-resolution dataset
 - 40 videos with resolutions of 240p, SIF or CIF
 - **1.04%**
 - Mid-resolution dataset
 - 23 videos with resolutions of 480p or 4CIF
 - **0.93%**
 - High-resolution dataset
 - 38 videos with resolutions 720p, 1080p or XGA
 - **1.13%**
- Encoder/decoder Time
 - Encoder: non-observable
 - Decoder: +1%

Context Dependency - A Sparse but Strict Constraint

Coefficient context dependencies

(a)

Scan order 1 that satisfies the context dependencies

1	2	3
4	5	6
7	8	9

(b)

Scan order 2 that satisfies the context dependencies

Topological Sort - Pseudocode

Algorithm 2 Recursive Context Conflict Solver						
Algorithm 2 Recursive Context Conflict SolverInput: s_{idx} > to-be-assigned scan order index c_{idx} > coefficient index c_{idx} > coefficient context dependenciesvisit[c_{idx}]> table of coefficient scanned indicatorsOutput: s_{idx} > increment it by one after it is assignedscan_order[s_{idx}]> adaptive scan orderProcedure:ContextConflictSolverfor each ctx_ c_{idx} in ctx_dep[c_{idx}]doif visit[ctx_ c_{idx}] is False thenContextConflictSolver(nb_ c_{idx} , ctx_dep, scan_order, s_{idx})end ifend forscan_order[s_{idx}] = c_{idx} visit[c_{idx}] = True						
visit $[c_{idx}] =$ True $s_{idx} = s_{idx} + 1$						