The Recursive Hessian Sketch for Adaptive Filtering

Robin Scheibler Martin Vetterli

School of Computer and Communication Sciences
École Polytechnique Fédérale de Lausanne, Switzerland

ICASSP
 March 25, 2016

Adaptive filters

- Unknown filter w
- Access to x_{n}, d_{n}
- Estimate of unknown filter $\widehat{\mathbf{w}}_{n}$
- Estimation error $e_{n}=d_{n}-\widehat{\mathbf{w}}_{n}^{\top} \mathbf{x}$

Adaptive filtering algorithms

1st order methods - Least mean squares (LMS)

- Stochastic gradient descent:

$$
\widehat{\mathbf{w}}_{n}=\underset{\mathbf{w}}{\arg \min } \mathbb{E}\left|e_{n}\right|^{2}, \quad \widehat{\mathbf{w}}_{n}=\widehat{\mathbf{w}}_{n-1}+\mu e_{n} \mathbf{x}_{n}
$$

- Cheap, robust

2nd order methods - Recursive Least Squares (RLS)

- Least squares problem:

$$
\widehat{\mathbf{w}}_{n}=\underset{\mathbf{w}}{\arg \min }\left\|\Lambda_{n}^{1 / 2}\left(\mathbf{X}_{n} \mathbf{w}-\mathbf{d}_{n}\right)\right\|^{2}
$$

- Complex, faster convergence, lower residual

Sketching

Theorem (Johnson-Lindenstrauss lemma)

Distances are preserved whp.

Sketching

Theorem (Johnson-Lindenstrauss lemma)

Distances are preserved whp.

$$
(1-\epsilon)\|\mathbf{u}-\mathbf{v}\|^{2} \leq\|\mathbf{S u}-\mathbf{S v}\|^{2} \leq(1+\epsilon)\|\mathbf{u}-\mathbf{v}\|^{2}
$$

Application to solving least squares problem
$\|\mathbf{A x}-\mathbf{b}\|^{2}$

Application to solving least squares problem

$$
\|\mathbf{A x}-\mathbf{b}\|^{2}
$$

$\|\mathbf{S A x}-\mathbf{S b}\|^{2}$

Application to solving least squares problem

$$
\xrightarrow[\text { Random linear map }]{\|\mathbf{A x}-\mathbf{b}\|^{2} \xrightarrow{\text { S: } \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}} \quad\|\mathbf{S A x}-\mathbf{S b}\|^{2}}
$$

- Smaller system to solve!

Application to solving least squares problem

$\|\mathbf{A x}-\mathbf{b}\|^{2}$
 $\|\mathbf{S A x}-\mathbf{S b}\|^{2}$

- Smaller system to solve!
- The J-L lemma implies $\|\mathbf{A} \tilde{\mathbf{x}}-\mathbf{b}\|^{2} \leq(1+\epsilon)\left\|\mathbf{A} \mathbf{x}^{\text {LS }}-\mathbf{b}\right\|^{2}$

Application to solving least squares problem

$$
\|\mathbf{A x}-\mathbf{b}\|^{2}
$$

$\|\mathbf{S A x}-\mathbf{S b}\|^{2}$

- Smaller system to solve!
- The J-L lemma implies $\|\mathbf{A} \tilde{\mathbf{x}}-\mathbf{b}\|^{2} \leq(1+\epsilon)\left\|\mathbf{A} \mathbf{x}^{\text {LS }}-\mathbf{b}\right\|^{2}$
- But no good bound on solution error

Objective of this talk

Apply sketching to the RLS algorithm.

$$
\widehat{\mathbf{w}}_{n}=\underset{\mathbf{w}}{\arg \min }\left\|\Lambda_{n}^{1 / 2}\left(\mathbf{X}_{n} \mathbf{w}-\mathbf{d}_{n}\right)\right\|^{2}
$$

Objective of this talk

Apply sketching to the RLS algorithm.

$$
\widehat{\mathbf{w}}_{n}=\underset{\mathbf{w}}{\arg \min }\left\|\Lambda_{n}^{1 / 2}\left(\mathbf{X}_{n} \mathbf{w}-\mathbf{d}_{n}\right)\right\|^{2}
$$

Wish list

- As good as RLS
- With less computations
- Good convergence

Objective of this talk

Apply sketching to the RLS algorithm.

$$
\widehat{\mathbf{w}}_{n}=\underset{\mathbf{w}}{\arg \min }\left\|\Lambda_{n}^{1 / 2}\left(\mathbf{X}_{n} \mathbf{w}-\mathbf{d}_{n}\right)\right\|^{2}
$$

Wish list

- As good as RLS
- With less computations
- Good convergence

Objective of this talk

Apply sketching to the RLS algorithm.

$$
\widehat{\mathbf{w}}_{n}=\underset{\mathbf{w}}{\arg \min }\left\|\Lambda_{n}^{1 / 2}\left(\mathbf{X}_{n} \mathbf{w}-\mathbf{d}_{n}\right)\right\|^{2}
$$

Wish list

- As good as RLS
- With less computations
- Good convergence

1. The iterative Hessian sketch
2. The recursive least squares
3. The recursive Hessian sketch

The iterative Hessian sketch

The Hessian sketch for least-squares

M. Pilanci, M. J. Wainwright, Iterative Hessian sketch: Fast and accurate solution approximation for constrained least-squares, 2014.

Goal

$$
\min _{\mathbf{x}} \frac{1}{2}\|\mathbf{A x}-\mathbf{b}\|^{2}
$$

A : data matrix
b : response vector

The Hessian sketch

Sketch only data matrix, then

The Hessian sketch for least-squares

M. Pilanci, M. J. Wainwright, Iterative Hessian sketch: Fast and accurate solution approximation for constrained least-squares, 2014.

Goal

$$
\min _{\mathbf{x}} \frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}, \quad \begin{aligned}
& \mathbf{A}: \text { data matrix } \\
& \mathbf{b}: \text { response vector }
\end{aligned}
$$

The Hessian sketch

$$
\tilde{\mathbf{x}}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\|\mathbf{S A} \mathbf{x}\|^{2}-\left(\mathbf{A}^{\top} \mathbf{b}\right)^{\top} \mathbf{x}
$$

Sketch only data matrix, then

$$
\frac{\left\|\mathbf{x}^{\mathrm{LS}}-\tilde{\mathbf{x}}\right\|_{\mathbf{A}}}{\left\|\mathbf{x}^{\mathrm{LS}}\right\|_{\mathbf{A}}} \leq \delta
$$

Relative error: δ

Relative error: δ^{2}

Relative error: δ^{3}

Relative error: ϵ in $N=\log (1 / \epsilon)$ iterations

Iterative Hessian sketch : summary

- Sketch data matrix, not the response vector
- e-approx of LS in $\log (1 / \epsilon)$ iterations
- Save computational cost of $\mathbf{A}^{T} \mathbf{A}$

Iterative Hessian sketch : summary

- Sketch data matrix, not the response vector
- ϵ-approx of LS in $\log (1 / \epsilon)$ iterations
- Save computational cost of $\mathbf{A}^{T} \mathbf{A}$

Iterative Hessian sketch : summary

- Sketch data matrix, not the response vector
- ϵ-approx of LS in $\log (1 / \epsilon)$ iterations
- Save computational cost of $\mathbf{A}^{T} \mathbf{A}$
$\mathbf{A}^{\top} \mathbf{A}$
$(\mathbf{S A})^{\top} \mathbf{S A}$

The recursive least squares

Exponentially weighted least squares

Exponentially weighted least squares

I

Exponentially weighted least squares

Recursion equation

RLS filter update

$$
\widehat{\mathbf{w}}_{n}=\underbrace{\left(\mathbf{X}_{n}^{\top} \boldsymbol{\Lambda}_{n} \mathbf{X}_{n}\right)^{-1}}_{\mathbf{R}_{n}} \underbrace{\mathbf{X}_{n}^{\top} \boldsymbol{\Lambda}_{n} \mathbf{d}_{n}}_{\mathbf{y}_{n}}
$$

Data update

RLS filter update

Recursion equation

RLS filter update

$$
\widehat{\mathbf{w}}_{n}=\underbrace{\left(\mathbf{X}_{n}^{\top} \boldsymbol{\Lambda}_{n} \mathbf{X}_{n}\right)^{-1}}_{\mathbf{R}_{n}} \underbrace{\mathbf{X}_{n}^{\top} \boldsymbol{\Lambda}_{n} \mathbf{d}_{n}}_{\mathbf{y}_{n}}
$$

Data update

$$
\mathbf{X}_{n+1}=\left[\begin{array}{l}
\mathbf{x}^{\top} \\
\mathbf{X}_{n}
\end{array}\right] \quad \mathbf{d}_{n+1}=\left[\begin{array}{c}
d \\
\mathbf{d}_{n}
\end{array}\right]
$$

RLS filter update

Recursion equation

RLS filter update

$$
\widehat{\mathbf{w}}_{n}=\underbrace{\left(\mathbf{X}_{n}^{\top} \boldsymbol{\Lambda}_{n} \mathbf{X}_{n}\right)^{-1}}_{\mathbf{R}_{n}} \underbrace{\mathbf{X}_{n}^{\top} \boldsymbol{\Lambda}_{n} \mathbf{d}_{n}}_{\mathbf{y}_{n}}
$$

Data update

$$
\mathbf{X}_{n+1}=\left[\begin{array}{l}
\mathbf{x}^{\top} \\
\mathbf{X}_{n}
\end{array}\right] \quad \mathbf{d}_{n+1}=\left[\begin{array}{c}
d \\
\mathbf{d}_{n}
\end{array}\right]
$$

RLS filter update

$$
\widehat{\mathbf{w}}_{n+1}=\underbrace{\left(\lambda \mathbf{R}_{n}+\mathbf{x x}^{\top}\right)^{-1}}_{\text {rank-1 update! }} \underbrace{\left(\lambda \mathbf{y}_{n}+\mathbf{x} d\right)}_{\mathbf{y}_{n+1}}
$$

Summary of RLS algorithm

- Solve LS at each step
- Update solution with matrix inversion Iemma - Cost quadratic in filter length

Summary of RLS algorithm

- Solve LS at each step
- Update solution with matrix inversion lemma
- Cost quadratic in filter length

Summary of RLS algorithm

- Solve LS at each step
- Update solution with matrix inversion lemma
- Cost quadratic in filter length

The recursive Hessian sketch

Sketching RLS

- Recall the Hessian sketch $\left(\mathrm{A}=\Lambda_{n}^{1 / 2} \mathrm{X}_{n}, \mathrm{~b}=\Lambda_{n}^{1 / 2} \mathrm{~d}_{n}\right)$

- Random row sampling : \mathbf{S}_{n}, fixed aspect ratio $q=\frac{m}{n}$

$$
\mathrm{S}_{n}=\left[\begin{array}{cc}
b_{n} & 0 \\
0 & \mathrm{~S}_{n-1}
\end{array}\right], \quad b_{n}= \begin{cases}1 & \text { w.p. } q \\
0 & \text { w.p. } 1-q\end{cases}
$$

Sketching RLS

- Recall the Hessian sketch $\left(\mathbf{A}=\boldsymbol{\Lambda}_{n}^{1 / 2} \mathbf{X}_{n}, \mathbf{b}=\boldsymbol{\Lambda}_{n}^{1 / 2} \mathbf{d}_{n}\right)$

$$
\tilde{\mathbf{w}}_{n}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\left\|\mathbf{S}_{n} \mathbf{A} \mathbf{x}\right\|^{2}-\left(\mathbf{A}^{\top} \mathbf{b}\right)^{\top} \mathbf{x}
$$

- Random row sampling : S_{n}, fixed aspect ratio $q=\frac{m}{n}$

Sketching RLS

- Recall the Hessian sketch $\left(\mathbf{A}=\boldsymbol{\Lambda}_{n}^{1 / 2} \mathbf{X}_{n}, \mathbf{b}=\Lambda_{n}^{1 / 2} \mathbf{d}_{n}\right)$

$$
\tilde{\mathbf{w}}_{n}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\left\|\mathbf{S}_{n} \mathbf{A} \mathbf{x}\right\|^{2}-\left(\mathbf{A}^{\top} \mathbf{b}\right)^{\top} \mathbf{x}
$$

- Random row sampling : \mathbf{S}_{n}, fixed aspect ratio $q=\frac{m}{n}$

$$
\mathbf{S}_{n}=\left[\begin{array}{cc}
b_{n} & 0 \\
0 & \mathbf{S}_{n-1}
\end{array}\right], \quad b_{n}= \begin{cases}1 & \text { w.p. } q \\
0 & \text { w.p. } 1-q\end{cases}
$$

Sketching RLS

- Recall the Hessian sketch $\left(\mathbf{A}=\boldsymbol{\Lambda}_{n}^{1 / 2} \mathbf{X}_{n}, \mathbf{b}=\Lambda_{n}^{1 / 2} \mathbf{d}_{n}\right)$

$$
\tilde{\mathbf{w}}_{n}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\left\|\mathbf{S}_{n} \mathbf{A} \mathbf{x}\right\|^{2}-\left(\mathbf{A}^{\top} \mathbf{b}\right)^{\top} \mathbf{x}
$$

- Random row sampling : \mathbf{S}_{n}, fixed aspect ratio $q=\frac{m}{n}$

$$
\mathbf{S}_{n}=\left[\begin{array}{cc}
b_{n} & 0 \\
0 & \mathbf{S}_{n-1}
\end{array}\right], \quad b_{n}= \begin{cases}1 & \text { w.p. } q \\
0 & \text { w.p. } 1-q\end{cases}
$$

$$
b_{1}=1
$$

Sketching RLS

- Recall the Hessian sketch $\left(\mathbf{A}=\boldsymbol{\Lambda}_{n}^{1 / 2} \mathbf{X}_{n}, \mathbf{b}=\Lambda_{n}^{1 / 2} \mathbf{d}_{n}\right)$

$$
\tilde{\mathbf{w}}_{n}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\left\|\mathbf{S}_{n} \mathbf{A} \mathbf{x}\right\|^{2}-\left(\mathbf{A}^{\top} \mathbf{b}\right)^{\top} \mathbf{x}
$$

- Random row sampling : \mathbf{S}_{n}, fixed aspect ratio $q=\frac{m}{n}$

$$
\mathbf{S}_{n}=\left[\begin{array}{cc}
b_{n} & 0 \\
0 & \mathbf{S}_{n-1}
\end{array}\right], \quad b_{n}= \begin{cases}1 & \text { w.p. } q \\
0 & \text { w.p. } 1-q\end{cases}
$$

$$
b_{2}=0
$$

Sketching RLS

- Recall the Hessian sketch $\left(\mathbf{A}=\boldsymbol{\Lambda}_{n}^{1 / 2} \mathbf{X}_{n}, \mathbf{b}=\Lambda_{n}^{1 / 2} \mathbf{d}_{n}\right)$

$$
\tilde{\mathbf{w}}_{n}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\left\|\mathbf{S}_{n} \mathbf{A} \mathbf{x}\right\|^{2}-\left(\mathbf{A}^{\top} \mathbf{b}\right)^{\top} \mathbf{x}
$$

- Random row sampling : \mathbf{S}_{n}, fixed aspect ratio $q=\frac{m}{n}$

$$
\mathbf{S}_{n}=\left[\begin{array}{cc}
b_{n} & 0 \\
0 & \mathbf{S}_{n-1}
\end{array}\right], \quad b_{n}= \begin{cases}1 & \text { w.p. } q \\
0 & \text { w.p. } 1-q\end{cases}
$$

$$
b_{3}=0
$$

Sketching RLS

- Recall the Hessian sketch $\left(\mathbf{A}=\boldsymbol{\Lambda}_{n}^{1 / 2} \mathbf{X}_{n}, \mathbf{b}=\Lambda_{n}^{1 / 2} \mathbf{d}_{n}\right)$

$$
\tilde{\mathbf{w}}_{n}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\left\|\mathbf{S}_{n} \mathbf{A} \mathbf{x}\right\|^{2}-\left(\mathbf{A}^{\top} \mathbf{b}\right)^{\top} \mathbf{x}
$$

- Random row sampling : \mathbf{S}_{n}, fixed aspect ratio $q=\frac{m}{n}$

$$
\mathbf{S}_{n}=\left[\begin{array}{cc}
b_{n} & 0 \\
0 & \mathbf{S}_{n-1}
\end{array}\right], \quad b_{n}= \begin{cases}1 & \text { w.p. } q \\
0 & \text { w.p. } 1-q\end{cases}
$$

$$
b_{4}=1
$$

Sketching RLS

- Recall the Hessian sketch $\left(\mathbf{A}=\boldsymbol{\Lambda}_{n}^{1 / 2} \mathbf{X}_{n}, \mathbf{b}=\Lambda_{n}^{1 / 2} \mathbf{d}_{n}\right)$

$$
\tilde{\mathbf{w}}_{n}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\left\|\mathbf{S}_{n} \mathbf{A} \mathbf{x}\right\|^{2}-\left(\mathbf{A}^{\top} \mathbf{b}\right)^{\top} \mathbf{x}
$$

- Random row sampling : \mathbf{S}_{n}, fixed aspect ratio $q=\frac{m}{n}$

$$
\mathbf{S}_{n}=\left[\begin{array}{cc}
b_{n} & 0 \\
0 & \mathbf{S}_{n-1}
\end{array}\right], \quad b_{n}= \begin{cases}1 & \text { w.p. } q \\
0 & \text { w.p. } 1-q\end{cases}
$$

$$
b_{5}=1
$$

Sketching RLS

- Recall the Hessian sketch $\left(\mathbf{A}=\boldsymbol{\Lambda}_{n}^{1 / 2} \mathbf{X}_{n}, \mathbf{b}=\Lambda_{n}^{1 / 2} \mathbf{d}_{n}\right)$

$$
\tilde{\mathbf{w}}_{n}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\left\|\mathbf{S}_{n} \mathbf{A} \mathbf{x}\right\|^{2}-\left(\mathbf{A}^{\top} \mathbf{b}\right)^{\top} \mathbf{x}
$$

- Random row sampling : \mathbf{S}_{n}, fixed aspect ratio $q=\frac{m}{n}$

$$
\mathbf{S}_{n}=\left[\begin{array}{cc}
b_{n} & 0 \\
0 & \mathbf{S}_{n-1}
\end{array}\right], \quad b_{n}= \begin{cases}1 & \text { w.p. } q \\
0 & \text { w.p. } 1-q\end{cases}
$$

Sketching RLS

- Recall the Hessian sketch $\left(\mathbf{A}=\Lambda_{n}^{1 / 2} \mathbf{X}_{n}, \mathbf{b}=\Lambda_{n}^{1 / 2} \mathbf{d}_{n}\right)$

$$
\tilde{\mathbf{w}}_{n}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\left\|\mathbf{S}_{n} \mathbf{A} \mathbf{x}\right\|^{2}-\left(\mathbf{A}^{\top} \mathbf{b}\right)^{\top} \mathbf{x}
$$

- Random row sampling : \mathbf{S}_{n}, fixed aspect ratio $q=\frac{m}{n}$

$$
\mathbf{S}_{n}=\left[\begin{array}{cc}
b_{n} & 0 \\
0 & \mathbf{S}_{n-1}
\end{array}\right], \quad b_{n}= \begin{cases}1 & \text { w.p. } q \\
0 & \text { w.p. } 1-q\end{cases}
$$

Caveat: IHS proof does not cover this sketch (yet)

Sketching RLS

- Recall the Hessian sketch $\left(\mathbf{A}=\Lambda_{n}^{1 / 2} \mathbf{X}_{n}, \mathbf{b}=\Lambda_{n}^{1 / 2} \mathbf{d}_{n}\right)$

$$
\tilde{\mathbf{w}}_{n}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\left\|\mathbf{S}_{n} \mathbf{A} \mathbf{x}\right\|^{2}-\left(\mathbf{A}^{\top} \mathbf{b}\right)^{\top} \mathbf{x}
$$

- Random row sampling : \mathbf{S}_{n}, fixed aspect ratio $q=\frac{m}{n}$

$$
\mathbf{S}_{n}=\left[\begin{array}{cc}
b_{n} & 0 \\
0 & \mathbf{S}_{n-1}
\end{array}\right], \quad b_{n}= \begin{cases}1 & \text { w.p. } q \\
0 & \text { w.p. } 1-q\end{cases}
$$

Caveat: IHS proof does not cover this sketch (yet)

The recursive Hessian sketch (RHS)

Summary of RHS algorithm

- Apply Hessian sketch to RLS
- Update inverse matrix wp q
- Cascade N sketched RLS

Summary of RHS algorithm

- Apply Hessian sketch to RLS
- Update inverse matrix wp q
- Cascade N sketched RLS

Summary of RHS algorithm

- Apply Hessian sketch to RLS
- Update inverse matrix wp q
- Cascade N sketched RLS

Complexity RLS vs RHS

Filter length : 10

Complexity RLS vs RHS

Filter length : 50

Complexity RLS vs RHS

Filter length: 100

Complexity RLS vs RHS

Filter length : 1000

Simulation results — MSE, SNR 30dB

Filter length $1000, N=5$, 300 realizations

Simulation results - MSE, SNR 30dB

Filter length $1000, N=5$, 300 realizations

Simulation results - MSE, SNR 30dB

Filter length $1000, N=5$, 300 realizations

Simulation results - MSE, SNR 30dB

Filter length $1000, N=5$, 300 realizations

Simulation results - MSE, SNR 30dB

Filter length $1000, N=5$, 300 realizations

Simulation results — MSE, SNR 10dB

Filter length $1000, N=5$, 300 realizations

Conclusion

Contributions

- A sketched adaptive filter converging to RLS solution
- Lower computational complexity
- Extensive simulation

What's next ?

- Proof of IHS for random row sampling
- Experiments with non-stationary input (e.g. audio, speech)
- Investigate tracking behavior

Conclusion

Contributions

- A sketched adaptive filter converging to RLS solution
- Lower computational complexity
- Extensive simulation

What's next ?

- Proof of IHS for random row sampling
- Experiments with non-stationary input (e.g. audio, speech)
- Investigate tracking behavior

Thanks for your attention!

Code and figures available at
http://github.com/LCAV/SketchRLS/

