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Abstract

Kriging algorithms based on FFT, the separability of certain co-
variance functions and low-rank representations of covariance
functions have been investigated. The current study combines
these ideas, and so combines the individual speedup factors of
all ideas. The reduced computational complexity is O(dLlogL),
where L := maxini, i = 1..d. For separable covariance functions,
the results are exact, and non-separable covariance functions
can be approximated through sums of separable components.
Speedup factor is 108, problem sizes 15e + 12 and 2e + 15 estima-
tion points for Kriging and spatial design.

1. Kriging

Task 1: Let m be number of measurement points, n number of
estimation points. Let ŝ 2 Rn be the kriging vector to be esti-
mated with mean µs = 0 and cov. matrix Qss 2 Rn⇥n:

ŝ = Qsy Q�1
yy y

| {z }
⇠

.

where y 2 Rm vector of measurement values, Qsy 2 Rn⇥m cross
cov. matrix and Qyy 2 Rm⇥m auto cov. matrix.
Task 2: Estimation of Variance �̂s 2 Rn Let Qss|y be the condi-
tional covariance matrix. Then

�̂s = diag(Qss|y) = diag
⇣
Qss � QsyQ

�1
yy Qys

⌘

= diag (Qss) �
mX

i=1

h
(QsyQ

�1
yy ei) � QT

ys(i)
i
,

where QT
ys(i) is the transpose of the i-th row in Qys.

Task 3: Geostatistical optimal design The goal is to optimize
sampling patterns from which the data values in y are to be ob-
tained. Two most common objective function to be minimized
are:

�A = n�1 trace
h
Qss|y

i
and

�C = cTQss|yc = cT (Qss � QsyQ
�1
yy Qys)c

= �2
z � (cTQsy)Q�1

yy (Qysc),

with �2
z = cTQssc.

Any Toeplitz covariance matrix Qss 2 Rn⇥n (the first column
is denoted by q) can be embedded in a larger circulant matrix
Q̌ 2 Rň⇥ň (the first column is denoted by q̌).
Sampling and Injection: Consider the m ⇥ n sampling matrix H:

Hi,j =

⇢
1 for xi = xj
0 otherwise ,

where xi are the coordinates of the i-th measurement location in
y, and xj are the coordinates of the j-th estimation point in s.

sampling: ⇠m⇥1 = Hun⇥1

injection: un⇥1 = HT⇠m⇥1

Qys = HQss and Qsy = QssH
T

Qyy = HQssH
T + R

Qsy⇠ = QssH
T⇠ = Qss

⇣
HT⇠

⌘

| {z }
u

.

Embedding and extraction: Let M 2 Rň⇥n maps the entries of
the finite embedded domain onto the periodic embedding do-
main. M has one single entry of unity per column. Extraction

of an embedded Toeplitz matrix Qss from the embedding circu-
lant matrix Q̌ as follows:

Qss = MT Q̌M, q = Mq̌.

Kriging vector can be efficiently estimated via d-dimensional FFT:

(Qsy⇠ =)Qssu = MT Q̌Mu = MTF [�d]
⇣
F [d] (q̌) � F [d] (Mu)

⌘
.

2. Low-rank kriging via FFT

Lemma 1 Let u =
Pku

j=1

Nd
i=1 uji, where u 2 Rn, uji 2 Rni

and n =
Qd

i=1 ni. Then the d-dimensional Fourier transformation
ũ = F [d](u) is

ũ =

kuX

j=1

dO

i=1

�
Fi
�
uji
��

Lemma 2 Let u and q have CP representation, then

u � q =

0
@

kuX

j=1

dO

i=1

uji

1
A �

0
@

kqX

`=1

dO

i=1

q`i

1
A =

kuX

j=1

kqX

`=1

dO

i=1

�
uji � q`i

�
.

F [d](u � q) =

kuX

`=1

kqX

j=1

dO

i=1

�
Fi
�
uji � q`i

��
.

2.1 Accuracy
If

kq � q(kq)kF  "q,
kq � q(kq)kF

kqkF
 "rel,q.

Then

kQss � Q
(kq)
ss kF  p

n"q,
kQss � Q

(kq)
ss kF

kQsskF
 "rel,q .

2.2 d-dimensional embedding/extraction

Since M[d] =
Nd

i=1 Mi, have

ǔ = M[d]u =

0
@

dO

i=1

Mi

1
A·

kuX

j=1

dO

i=1

uji =

kuX

j=1

dO

i=1

Miuji =:

kuX

j=1

dO

i=1

ǔji,

2.3 Low-rank kriging estimate Qssu

Qssu ⇡ Q
(kq)
ss u(ku) =

kqX

`=1

kuX

j=1

dO

i=1

MT
i F�1

i

⇥
(Fiq̌`i) � (Fiǔji)

⇤
.

with accuracy

kQssu � Q
(kq)
ss u(ku)kF  p

n"qkuk + kQssk · "u.

The total costs is O(kukqd Ľ⇤ log Ľ⇤) instead of O(ň log ň), with
Ľ⇤ = maxi=1...d ňi and ň =

Qd
i=1 ň.

Kriging estimator

ŝ = Qsy⇠ = QssH
T⇠ = MT Q̌MHT⇠.

can be written in the CP tensor format

ŝ = Qsy⇠ =

mX

j=1

⇠j

kqX

`=1

dO

i=1

⇣
MT

i F�1
i

⇥
(Fiq̌`i) � (Fiȟji)

⇤⌘
.

3. Numerics: CPU time and storage

Figure 1: CPU time of the four different methods depending on
the number of lattice points in a rectangular domain.

Figure 2: Memory requirements of the four different methods de-
pending on the number of lattice points in a rectangular domain.

Example: concentration of an ore mineral

Domain: 20m ⇥ 20m ⇥ 20m, n = 250003 dofs., m = 4000
measurements randomly distributed within the volume, with
increasing data density towards the lower left back cor-
ner of the domain. The covariance model is anisotropic
Gaussian with unit variance and with 32 correlation lengths
fitting into the domain in the horizontal directions, and
64 correlation lengths fitting into the vertical direction.

Figure 3: The top left figure shows the entire domain at a sam-
pling rate of 1:64 per direction, and then a series of zooms into
the respective lower left back corner with zoom factors (sampling
rates) of 4 (1:16), 16 (1:4), 64 (1:1) for the top right, bottom left
and bottom right plots, respectively. Color scale: showing the
95% confidence interval [µ � 2�, µ + 2�].

4. Conclusion

We develop new algorithms for large-scale Kriging problems (in-
cluding the estimation variance and measures for the optimality
of sampling patterns), combining low-rank tensor approximations
with existing fast methods based on the FFT. The computational
cost is O(kqmdL⇤ log L⇤), where kq is the rank, m number of mea-
surements, d dimension and L⇤ = max(ni) with n =

Qd
i=1 ni.

Memory cost: O
�
[kq + m]dL

�
, where L =

Pd
i=1 ni.

• 2D Kriging with 2.7e+7 estimation points and 100 measure-
ment values takes 0.25 sec.,

• the estimation variance takes < 1 sec.,

• the spatial average of the estimation variance (the A-criterion
of geostat. optimal design) for 2 · 1012 estim. points takes 30
sec.,

• the C-criterion of geostat. optimal design for 2 · 1015 estimation
points takes 30 sec.,

• 3D Kriging problem with 15 · 1012 estimation points and 4000
measurement data values takes 20 sec.
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1. Abstract

• This work proposes a new regularization approach for linear
least-squares problems with random Gaussian matrices.
• The proposed approach is based on forcing an artificial pertur-

bation matrix with a bounded norm into the linear model matrix
to enhance the singular-value (SV) structure of the matrix and
hence the solution of the estimation problem.
•Relying on the randomness of the model matrix, a number of

tools from random matrix theory are applied to derive the near-
optimum regularizer that minimizes the mean-squared error of
the estimator.
• Simulation results demonstrate that the proposed approach

outperforms a set of benchmark regularization methods for
various estimated signal characteristics. In addition, simu-
lations show that our approach is robust in the presence of
model uncertainty.

2. Problem Statement

•Consider the linear system

y = Hx + z. (1)

– H ∈ CN×M is the linear transformation matrix. (Known)
– y ∈ CN×1 is the observation vector. (Known)
– x ∈ CM×1 is the desired signal (Unknown):

∗Rx , E
(
xxH

)
if x is random. (Unknown)

∗Rx , xxH if x is deterministic.
– z ∈ CN×1 is the noise vector that has i.i.d. entries with zero

mean with variance σ2
z. (Unknown)

– z and x are independent.

Assumption 1 Let H ∈ CN×M have i.i.d. entries with Hij ∼
CN (0, 1), and let Rx be a deterministic uniformly bounded real
matrix of size M ×M .

Assumption 2 Consider the linear asymptotic regime in which
the problem dimensions N and M grow proportionally to infinity
with ρ = N/M ∈ (0,∞).

Problem Given y and H, find an estimate of x.

• The simplest way to estimate x is by using the least-squares
(LS) estimation

min
x
||y −Hx||22. (2)

• LS Issues:
– Solution is potentially very sensitive to perturbations in the

data
– In many cases, LS is completely unreliable.
• Alternatives: Use regularization
• The most common and well-known form of regularization is the

Tikhonov regularization

min
x
||y −Hx||22 + η||x||22. (3)

• The solution of (3) is given by

x̂RLS = (HTH + γI)−1HTy, (4)

where γ = η.
• Algorithms to find γ ? There are many methods:

– Generalized cross validation (GCV).
– L-curve.
– Quasi-optimal.

3. Constrained Perturbation
Regularization Approach (COPRA)

• As a form of regularization, we allow a perturbation ∆H into
H.
• This perturbation is aimed to improve the eigenvalue/singular-

value (SV) structure of the matrix H.
• In order to maintain the balance between improving the SV

and maintaining the fidelity of the basic model in (1), we add
the constraint ||∆H||2 ≤ λ, λ ∈ R+.
• As a result, the model in (1) is modified to

y ≈ (H + ∆H)x + z. (5)

Question How to choose ∆H and λ ?

• Assuming that we know the best choice of λ, we consider min-
imizing the worst-case residual function of (5)

min
x̂

max
∆H
||y − (H + ∆H)x̂||2

subject to: ||∆H||2 ≤ λ. (6)

• It can be shown that the solution to (6) is given by the RLS

x̂ =
(
HHH + γI

)−1
HHy, (7)

where γ is obtained by solving the following equation:

λ2||y−H
(
HHH + γI

)−1
HHy||2 = γ2||

(
HHH + γI

)−1
HHy||2.

(8)

Problem The solution requires knowledge of λ, which we do not know.

• By taking the expected value of (8) we can manipulate to ob-
tain

λ2
oE

[
σ2

z
1

N2γ̃2
o
Tr

((
1

Nγ̃o
HHH + I

)−2
)]

+ λ2
oE

[
1

Nγ̃2
o
Tr

(
Rx

(
1

Nγ̃o
HHH + I

)−2 HHH

N

)]

= E

[
σ2

z
1

Nγ̃2
o
Tr

((
1

Nγ̃o
HHH + I

)−2 HHH

N

)]

+ E
[
Tr
(

HHH
(
HHH + Nγ̃oI

)−2
HHHRx

)]
, (9)

where Tr{.} denotes the trace operator and γo , Nγ̃o.

Theorem 1 Under the settings of Assumptions 1 and 2, the
optimal perturbation bound λo is given by

λ2
o ≈

δ̃oN
(
δ2
oδ̃o(δ̃oTr (Rx) + ρ (σ2

z − γ̃oTr (Rx)))
)

δoδ̃oTr (Rx)(δoδ̃o − γ̃o)− δoγ̃oρσ2
z

+
δ̃oN

(
δoγ̃oρ (γ̃oTr (Rx)− σ2

z)− γ̃2
oρ Tr (Rx)

)

δoδ̃oTr (Rx)(δoδ̃o − γ̃o)− δoγ̃oρσ2
z

. (10)

•where:

δo, δ̃o =
1

2

(
γ̃o

(√
γ̃−2

o
(

(γ̃o + 1)2 + 2 (γ̃o − 1) ρ + ρ2
)
− 1

)
+
− ρ
−
+ 1

)
.

(11)

Problem λo dependents on σ2
z and Rx which are not known.

•We propose applying the MSE criterion to eliminate this de-
pendency and to set λo that minimizes the MSE approximately.

4. Minimizing the MSE

• The MSE for an estimate x̂ of x can be defined as

MSE = Tr
{
E
(

(x̂− x)(x̂− x)T
)}

. (12)

•We can manipulate the MSE to the form:

MSE = E
[
σ2

z Tr
(

HHH
(
HHH + γI

)−2
)

+ γ2 Tr
((

HHH + γI
)−2

Rx

)]
. (13)

• Theorem 2 Under the settings of Assumptions 1 and 2, and by
defining γ , Nγ̃, the DE of the MSE function in (13) can be
obtained as

MSE ≈
δ2
(
δ̃ρ
(
γ̃ − δδ̃

)
σ2

z + γ̃3 Tr (Rx)
)

γ̃ρ
(
γ̃2ρ− δ2δ̃2

) . (14)

where δ and δ̃ are given by (11) when γ̃o = γ̃.
• By taking the derivative of (14) w.r.t γ, then equating the result

to zero we obtain

γ̃o ≈
ρ σ2

z

Tr (Rx)
. (15)

• Substitute this results in (10) and then substitute the result in
(8) we obtain COPRA characteristic equation:

S (γ̃o) = Tr
(
Σ2
(
Σ2 + Nγ̃oI

)−2
bbH

)(
δ2

oδ̃
2
o − γ̃o

2δo − γ̃oδoδ̃o

)

+ Tr
((

Σ2 + Nγ̃oI
)−2

bbH
)
×

(
Nδoδ̃o

(
γ̃o

2 − γ̃oδoδ̃o − δoδ̃
2
o

)
+ Mδ̃oγ̃o

(
γ̃o − γ̃oδo + δ2

oδ̃o

))
= 0.

(16)

where b , UTy and H = UΣVT is the SVD of H.

• Solving (16) provides the near-optimal regularization parame-
ter γ̃o that minimizes the MSE of the estimator.

5. Simulation Results
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Figure 1: Performance comparison with perfect H and x ∼
N (0, I) with i.i.d. elements.
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Figure 2: Performance comparison with perfect H and x is a
deterministic square pulse signal.
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Figure 3: Performance comparison with uncertainty in H i.e.,
Ĥ = H− eΩ where H is the true unknown model matrix; Ĥ is the
known estimated matrix; and Ω is the model error matrix, which
is independent of Ĥ and has i.i.d. entries with Ωij ∼ CN (0, 1).

6. Conclusions

A new regularization approach for a linear LS estimation is pro-
posed. The algorithm is shown to outperform several benchmark
methods with low computational complexity and also to be robust
in the presence of model uncertainty.


