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e This work proposes a new regularization approach for linear

least-squares problems with random Gaussian matrices.

e The proposed approach is based on forcing an artificial pertur-
bation matrix with a bounded norm into the linear model matrix
to enhance the singular-value (SV) structure of the matrix and
hence the solution of the estimation problem.

e Relying on the randomness of the model matrix, a number of
tools from random matrix theory are applied to derive the near-
optimum regularizer that minimizes the mean-squared error of
the estimator.

e Simulation results demonstrate that the proposed approach

outperforms a set of benchmark regularization methods for

various estimated signal characteristics. In addition, simu-
lations show that our approach is robust in the presence of
model uncertainty.

2. Problem Statement

e Consider the linear system
y = Hx + z. (1)

—H e CV*M js the linear transformation matrix. (Known)
—y € CV*1js the observation vector. (Known)
—x € CMX*1 s the desired signal (Unknown):

+Ry = E (xxH) If x Is random. (Unknown)

+ Ry 2 xx!! if x is deterministic.

—z € CV*1is the noise vector that has i.i.d. entries with zero
mean with variance o2. (Unknown)

—z and x are independent.

Assumption 1 Let H € CN*M have iid. entries with H;; ~

CN(0,1), and let Rx be a deterministic uniformly bounded real

matrix of size M x M.

Assumption 2 Consider the linear asymptotic regime in which
the problem dimensions N and M grow proportionally to infinity

with p = N/M € (0, 00).
Given y and H, find an estimate of x.

e The simplest way to estimate x is by using the least-squares
(LS) estimation

min ||y — Hx|[5. (2)
o LS Issues:
— Solution is potentially very sensitive to perturbations in the
data

—In many cases, LS is completely unreliable.
e Alternatives: Use regularization

e The most common and well-known form of regularization is the
Tikhonov regularization

- 2 2
min ||y — Hx|[3 + nl[x|[5 (3)

e The solution of (3) is given by
)A(RLS = <HTH + ’YI>_1HTY; (4)

where v = 7.
e Algorithms to find v ? There are many methods:

— Generalized cross validation (GCV).
— L-curve.
— Quasi-optimal.

3. Constrained Perturbation

Regularization Approach (COPRA)

e As a form of regularization, we allow a perturbation AH into
H.

e This perturbation is aimed to improve the eigenvalue/singular-
value (SV) structure of the matrix H.

e In order to maintain the balance between improving the SV
and maintaining the fidelity of the basic model in (1), we add
the constraint ||[AH||s < X\, A € R™.

e As a result, the model in (1) is modified to
y ~ (H+ AH)x + z. (9)
How to choose AH and \ ?

tareqg.alnaffouri}@kaust.edu.sa

e Assuming that we know the best choice of A, we consider min-
iImizing the worst-case residual function of (5)

min max ||y — (H+ AH)x/||>
x AH
subject to: ||[AH||s < . (6)
e [t can be shown that the solution to (6) is given by the RLS
~1
% — (HH H -+ 71) Hly (7)

where ~ is obtained by solving the following equation:
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The solution requires knowledge of )\, which we do not know.

¢ By taking the expected value of (8) we can manipulate to ob-
tain

_2 7
1 1
AE | o2 Tr (—NHHH+I>
0 ZN2§% ( N/YO

S ]

1 1 H"”'H

+ )\QE ——TIr| R (—NHH H + I) —_—
© _N’Aj/g ( * N’Vo N |

_ 9 _
1 1 H“H
=K 0§—~2Tr (—NHHH + I) —_—
N% |

+E [Tr (HH H (HH H -+ N%I) i HRX) } | (9)

where Tr{.} denotes the trace operator and vo = NAo.

Theorem 1 Under the settings of Assumptions 1 and 2, the
optimal perturbation bound \o is given by
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Ao dependents on o2 and Ry which are not known.

e We propose applying the MSE criterion to eliminate this de-
pendency and to set \g that minimizes the MSE approximately.

4. Minimizing the MSE

e The MSE for an estimate x of x can be defined as

MSE = Tr{IE ((fc—x)(fc—x)T)}. (12)
e We can manipulate the MSE to the form:
MSE = E [gg Tr (HH H (HH H + 71) _2>
+72Tr((HHH+71)QRX>] (13)

e Theorem 2 Under the settings of Assumptions 1 and 2, and by
defining v & N7, the DE of the MSE function in (13) can be
obtained as

op (ﬁ — 55) 07 +7° Tf(Rx))

7 (
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(14)

where § and § are given by (11) when 7o = 7.

e By taking the derivative of (14) w.r.t v, then equating the result
to zero we obtain
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~ P Oy
~ . 1
o Tr (Rx) (15)

e Substitute this results in (10) and then substitute the result in
(8) we obtain COPRA characteristic equation:

S (50) = Tt (22 (3% + NAoI) be) (53,53 5026, — %5050)

+Tr ((22 + N7oI) be) X

(Nodo (76 = ododo — a3 ) + Moo (o — Fodo + 0300 ) ) =0,
(16)

where b 2 Uly and H = UX V! is the SVD of H.

e Solving (16) provides the near-optimal regularization parame-
ter 4o that minimizes the MSE of the estimator.

5. Simulation Results

4% | | | |
/ N -¥-L-curve
2r NMSE isabove 4 dB | « i
L o Quasl
OE < AN ——-GCV
5l Rilaa s - \\\ —8- COPRA |
>
= : * |---LMMSE
S, -4 > \\ |
L1 - S
N -6r 0B m———= = o % N ¥* ]
% g 2 0.04 | s N
—— ~a AN —
Soo3f . . > R
_10 o 0z e - 2 = = & e =2 o )\ ]
§’0-02t |« | Averagerun N *\\
: >
12 |z 001t | time > \
0 ' | | NS
14 + -10 0 10 20 30 NE
| SNR [dB] | | | | T
-10 -5 0 5 10 15 20 25 30

SNR [dB]

Figure 1: Performance comparison with perfect H and x ~
N(0,1) with i.i.d. elements.
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Figure 2: Performance comparison with perfect H and x is a
deterministic square pulse signal.
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Figure 3: Performance comparison with uncertainty in H i.e.,
H = H — e where H is the true unknown model matrix; H is the
known estimated matrix; and €2 is the model error matrix, which
is independent of H and has i.i.d. entries with Q;; ~ CN(0,1).

6. Conclusions

A new regularization approach for a linear LS estimation is pro-
posed. The algorithm is shown to outperform several benchmark
methods with low computational complexity and also to be robust
in the presence of model uncertainty.



