

Why interesting?

Goals for future sensor networks such as IoT:

- limit resource consumption
- protect private information
- maintain data fidelity

What are the tradeoffs between these criteria?

The system model

Each sensor $i = 1, 2, \ldots, N$

• measures a r.v. $X_i \sim P$ where the distribution P is unknown but in a set \mathcal{P} of distributions on an alphabet $\mathcal{X} \subset \mathbb{R}$.

• transmits private version $Y_i \in \mathcal{Y}$, where $|\mathcal{Y}| \leq |\mathcal{X}|$.

Randomized requantization: map $X_i \to Y_i$ using channel Q(y|x). **Server goal:** estimate a linear combination of X_i 's.

Performance metrics

Local differential privacy [Duchi et al. '13] :

The adversary's likelihood of guessing that the input sample was x over x' doesn't increase more than e^{ϵ} after observing the released value y:

$$\frac{P(X = x)}{P(X = x')} \leq \frac{P(X = x|Y = y)}{P(X = x'|Y = y)} \cdot e^{\epsilon}$$

$$\frac{Q(y|x)}{Q(y|x')} \leq e^{\epsilon} \quad \text{(by Bayes's rule)}$$

Compression ratio:

Bit Rate $\propto \log_2 |\mathcal{X}|$ Cmp. Ratio $\rho = \frac{\log_2 |\mathcal{Y}|}{|\mathcal{Y}|}$

 $\delta = \mathbb{E}_{P \times Q}[d(X, Y)] =$ $\sum_{i=1}^{N} \sum_{j=1}^{\hat{N}} P(x_i) Q(y_j | x_i) (x_i - y_j)^2$

Utility (mse):

RANDOMIZED REQUANTIZATION WITH LOCAL DIFFERENTIAL PRIVACY Sijie Xiong¹, Anand Sarwate¹, Narayan Mandayam¹ Rutgers, The State University of New Jersey

Goal: find privacy-utility tradeoff and optimal Q

The set of ε -locally differentially private channels and the set of channels yielding expected distortion no greater than δ are defined by $\mathcal{Q}_{\rm LDP}(\epsilon) = \left\{ Q(y|x) : \log \frac{Q(y|x)}{Q(y|x')} \le \frac{Q(y|x')}{Q(y|x')} \le \frac{Q$ $\mathcal{Q}_{\text{MSE}}(\delta) = \left\{ Q(y|x) : \max_{P \in \mathcal{D}} \mathbb{E}_{P \times Q}(d) \right\}$ Given $\mathcal{P}, \rho, \delta$, the optimal ϵ becomes $\epsilon^*(\mathcal{P}, \rho, \delta) = \{\mathcal{Q}_{\mathrm{LDP}} \cup$ minimize e^{ε} s.t. $\max \mathbb{E}_P$ $0 \leq Q$ $Q \cdot \mathbf{1}_{|\mathcal{Y}|}$

Theorem

The above optimization problem is a constrained quasi-convex optimization problem, and can be solved by bisection method.

Solving the optimization problem

$$\leq \epsilon, \ \forall (x, x', y) \in \mathcal{X} \times \mathcal{X} \times \mathcal{Y} \bigg\}$$
$$l(X, Y)) \leq \delta \bigg\}$$

$$\cup \mathcal{Q}_{\mathrm{MSE}} \neq \emptyset \}$$

$$\begin{aligned} \mathbf{P}_{\times Q}[d(X,Y)] &\leq \delta, \\ \mathbf{I}_{1}, \\ &= \mathbf{1}_{|\mathcal{X}|}. \end{aligned}$$

Minimum achievable privacy level ϵ^* given (δ, ρ) value pairs, finding (ϵ, δ, ρ) -tradeoff. • for fixed ρ , standard $\delta \uparrow \leftrightarrow \epsilon \downarrow \mathsf{tradeoff}$ • across cmp. ratios, achievable ϵ quite small

- under small δ • can halve bit rate without sacrificing
- privacy

Validation on synthetic data

Compare randomized requantization (RR) with perturbation method in the sparse Fourier transform domain

- RR works better, more consisitent
- RR adds in much smaller noise
- RR scales better with network size

- Optimizing over reconstruction \mathcal{Y} (c.f. Lloyd-Max).
- Use privacy allocation to apportion resources in networks: • individuals have different privacy budget $\epsilon_1, \epsilon_2, \ldots, \epsilon_N$
 - multiple servers trying to access the same data
 - gateway has to manage constraints and demands

Ongoing work and further directions