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fc-fMRI

• Methodologically:

• Infers relationships between regions 

during particular states.

• Works with multiple datasets (EEG, LFP, 

fMRI, etc.)

• And multiple algorithmic approaches 

(seed-based correlation to graph-theory)

• In application

• Brain’s intrinsic functional network 

architecture.

• Changes associated with disease

• Dynamic changes thru time

Biswal, B., et al. (1995). "Functional connectivity in the motor cortex of resting human brain 

using echo-planar MRI." Magn Reson Med 34(4): 537-541.
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Challenges and Proposed Solutions

Challenges Proposed solutions

Decouple overlapping BOLD signals Signals should be transformed with a filter-bank:

-wavelet packets

Depict network communications between both local and long 

range brain regions

Multi-spatial network analysis:

-hierarchical clustering

Reduce manual work load interpreting multi-spatial and multi-

spectral results

Features should be compared and aggregated into very 

similar feature sets:

-wavelet entropy (signal level similarity)

-mutual information (network level similarity)
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A. Medda, S. Keilholz. Wavelet Packet Based 

Clustering for the Study of Functional 

Connectivity in the Rat Brain. Proceeding of the 

46th Asilomar Conference on Signals, Systems, 

and Computers; 2012 November 4, 2012; 

Pacific Grove, CA.

BOLD Power Spectrum

S(f)

Du, C., et al. (2014). "Low-frequency calcium 

oscillations accompany deoxyhemoglobin 

oscillations in rat somatosensory cortex." Proc 

Natl Acad Sci U S A 111(43): E4677-4686.

Daubechy’s 7 tap wavelet packet filters

Depth, D = 3; Positions, P = {0-7}

Wornell, G. W. (1993). "Wavelet-based 

representations for the 1/f family of 

fractal processes." Proceedings of the 

IEEE 81(10): 1428-1450.
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Hierarchical Clustering:  A general utility for clustering information

• Distance Metric

𝑆1 𝑖, 𝑗 = 𝑉𝑖≠𝑗 − 𝑉𝑗 𝑉𝑖≠𝑗 − 𝑉𝑗
𝑇
,

• Linkage Metric

𝑆2 𝑎, 𝑏 =
1

(𝑛𝑎𝑛𝑏)
 

𝑖=1

𝑛𝑎

 

𝑗=1

𝑛𝑏

𝑆1 𝑖 ∈ 𝑎, 𝑗 ∈ 𝑏 .

• Generation of the kth cluster

𝑌 𝑘 = min 𝑆2𝑘
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D=3

D=2

D=1

D=0

(0Hz-0.5Hz)

(0. 5Hz-1Hz)

(0Hz-0.25Hz) (0.25Hz-0. 5Hz)

(0Hz-0.125Hz) (0.125Hz-0.25Hz) (0.25Hz-0.375Hz) (0.375Hz-0.5Hz)

Initial results on single slice of rat brain

A. Medda, S. D. K. (2012). Wavelet 

Packet Based Clustering for the 

Study of Functional Connectivity 

in the Rat Brain. Proceeding of 

the 46th Asilomar Conference on 

Signals, Systems, and Computers, 

Pacific Grove, CA.
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Process Explodes the Search Space for Functionally Relevant Networks
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Process Explodes the Search Space for Functionally Relevant Networks
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Wavelet Clustering fc-fMRI Compares Well with Alternative Techniques
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Initial results in multi-slice human data
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Billings, J. C. W., et al. (2013). 

Agglomerative clustering for resting 

state MRI. Neural Engineering 

(NER), 2013 6th International 

IEEE/EMBS Conference on.

• Public resting-state BOLD dataset: NKI Enhanced Rockland Sample

• Hundreds of volunteers evenly sampled across demographic

• TR = 0.645 s, 3 mm isotropic, 10 minutes

• Standard preprocessing (SPM 8)
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Agglomerative clustering for whole-brain networks?

Wang, Y. and T.-Q. Li (2013). "Analysis of Whole-Brain 

Resting-State fMRI Data Using Hierarchical Clustering 

Approach." PLoS ONE 8(10): e76315.

Cordes, D., et al. (2002). "Hierarchical clustering to measure connectivity in fMRI resting-state 

data." Magnetic resonance imaging 20(4): 305-317.
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An Improved Method for Cutting a Hierarchical Clustering Tree

• The inconsistency factor cuts the hierarchy

𝐼𝐹(𝑌𝑘) = 𝑌𝑘 −  𝑌𝑔 /𝑠𝑡𝑑(𝑌𝑔)

Subscript g is the number of links for which an 

average and standard deviation are calculated.
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The Hierarchical Clustering Dendrogram is a Natural Space for Conveying Network Multi-Scalability, n = 112
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g ≈ ∞, minimum inconsistency factor, IF

g ≈ 2, maximum IF
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Feature comparison and aggregation

• Cluster Entropy:
𝐻 𝐶 = − 𝑖=1

𝑘 𝑃 𝑖 log2 𝑃 𝑖 ,

with 𝑃 𝑖 =
𝐶𝑖

𝑛
,

𝐶𝑖 is a cluster of 𝑛 parts.

• Mutual information:

𝐼 𝐶′, 𝐶′′ =  𝑖=1
𝑘  𝑗=1

𝑙 𝑃 𝑖, 𝑗 log2
𝑃(𝑖,𝑗)

𝑃 𝑖 𝑃(𝑗)
, 

where 𝑃 𝑖, 𝑗 =
𝐶𝑖∩𝐶𝑗

𝑛
.

• Variation in information:

VI 𝐶′, 𝐶′′ = 𝐻 𝐶′ − 𝐼 𝐶′, 𝐶′
′
+ 𝐻 𝐶′′ − 𝐼 𝐶′, 𝐶′′

• Non-normalized Shannon Entropy

𝐸 𝑠 = − 

𝑖

𝑠𝑖
2 log 𝑠𝑖

2

With 𝑠𝑖 being a voxel’s wavelet coefficients

Signal comparisons Network comparisons
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Entropy values across spectra, N = 112

Non-normalized Shannon Entropy
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Network Spectral Similarity as Identified Through Mutual Information

g ≈ ∞, IT = 1.658

g = 2, IT = maximum
Entropy:
𝐻 𝐶 = − 𝑖=1

𝑘 𝑃 𝑖 log2 𝑃 𝑖 ,

with 𝑃 𝑖 =
𝐶𝑖

𝑛
,

𝐶𝑖 is a cluster of 𝑛 parts.

Mutual information:

𝐼 𝐶′, 𝐶′′ =

 𝑖=1
𝑘  𝑗=1

𝑙 𝑃 𝑖, 𝑗 log2
𝑃(𝑖,𝑗)

𝑃 𝑖 𝑃(𝑗)
, 

where 𝑃 𝑖, 𝑗 =
𝐶𝑖∩𝐶𝑗

𝑛
.

Variation in information:

VI 𝐶′, 𝐶′′ =

𝐻 𝐶′ − 𝐼 𝐶′, 𝐶′
′
+

𝐻 𝐶′′ − 𝐼 𝐶′, 𝐶′′ .
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Network Spectral Similarity as Identified Through Mutual Information
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The Low-frequency Fluctuation Domain Separates into Distinct Networks at the 50% Point of All 

Inconsistency Factors
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G_###: Group dataset with ### volunteers

V_###: Volunteer ###

D5P1 Packet:  

0.028-0.052 Hz

Broadband:

0.003 – 0.745

D6P0 Packet:  

0.003-0.016 Hz

D6P1 Packet:  

0.016-0.028 Hz
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Conclusion

• BOLD signal <0.1 Hz has a high probability of containing a large amount of noise

• Best BOLD networks in the low-frequency fluctuation range between 0.01 and 0.1 Hz

• Frequency range may be subdivided into to build quantitatively distinct networks

• Functional connectivity networks exist at several spatial scales who complimentarily address whole brain connectivity

• Network connectivity in groups produce well known functional architecture

• Individual networks demonstrate a mixture of highly variant architectures in addition to well known network features

• Equivalent findings observed independent of acquisition parameters
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