Knowledge Distillation for Small-footprint Highway Networks

Liang Lu[†], Michelle Guo[‡] and Steve Renals^{*}

[†]Toyota Technological Institute at Chicago [‡]Stanford University *The University of Edinburgh

6 March 2017

Why smaller model?

- Deep learning has made a tremendous impact
 - $\circ~$ Large amount of data for training
 - Powerful computational devices
 - Connected to a server
- Embedded (Client-side) deep learning
 - Local inference
 - Small footprint
 - Energy efficient

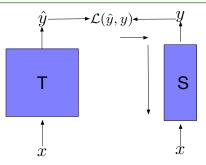
- Speech recognition as an interface (requiring internet connection)
 - Google Home
 - Amazon Alexa
 - Microsoft Cortana
 - Apple Siri
 - ° ...
- Local speech service
 - Internet is unavailable
 - Privacy issues
 - $\circ~$ Low latency

Background: smaller models

- Low-ranks matrices for DNNs
 - J. Xue, J. Li, and Y. Gong, "Restructuring of deep neural network acoustic models with singular value decomposition." in Proc. INTERSPEECH, 2013
 - T.N.Sainath, B.Kingsbury, et al., "Low-rank matrix factorization for deep neural network training with high-dimensional output targets," in Proc. ICASSP. IEEE, 2013

- Structured linear layers
 - V. Sindhwani, T. N. Sainath, and S. Kumar, "Structured transforms for small-footprint deep learning", in Proc. NIPS, 2015.
 - M. Moczulski, M. Denil, J. Appleyard, and N. de Freitas, "ACDC: A Structured Efficient Linear Layer," ICLR 2016

Background: smaller models



- FitNet by teacher-student training
 - J.Li, R.Zhao, J.-T.Huang, and Y.Gong, "Learning small-size DNN with output-distribution-based criteria," in Proc. INTERSPEECH, 2014
 - R. Adriana, B. Nicolas, K. Samira Ebrahimi, C. Antoine, G. Carlo, and B. Yoshua, "FitNets: Hints for thin deep nets," in Proc. ICLR, 2015

Model

$$\mathbf{h}_{l} = \sigma(\mathbf{h}_{l-1}, \theta_{l}) \circ \underbrace{\mathcal{T}(\mathbf{h}_{l-1}, \mathbf{W}_{T})}_{\text{transform gate}} + \mathbf{h}_{l-1} \circ \underbrace{\mathcal{C}(\mathbf{h}_{l-1}, \mathbf{W}_{c})}_{\text{carry gate}}$$
(1)

- Shortcut connections with gates
- Similar to Residual networks
- W_T and W_C are layer independent

 R.K.Srivastava, K.Greff, and J.Schmidhuber, "Training very deep networks," in Proc. NIPS, 2015
 Z.Y. Zhang, et al. "Highway Long Short-Term Memory RNNs for Distant Speech Recognition", in Proc. ICASSP 2015
 L. Lu and S. Renals, "Small-footprint deep neural networks with highway connections for speech recognition", in Proc. Interspeech 2016 7 of 22

Loss Functions

(2)

Cross Entropy Loss

$$\mathcal{L}^{(CE)}(\theta) = -\sum_{j} \underbrace{\hat{y}_{jt}}_{\text{label}} \log \underbrace{y_{jt}}_{\text{prediction}},$$

where j is the class index, and t is the time step.

• Teacher-Student Loss (KL-divergence)

$$\mathcal{L}^{(\mathsf{KL})}(\theta) = -\sum_{j} \underbrace{\tilde{y}_{jt}}_{\text{prediction-T}} \log \underbrace{y_{jt}}_{\text{prediction-S}}, \quad (3)$$

CHICAGO AS

Loss Functions

• Sequence-level teacher-student loss

$$\mathcal{L}^{(sKL)}(\theta) \approx \sum_{\mathcal{W} \in \Phi} P^*(\mathcal{W}|\boldsymbol{X}) \log P(\mathcal{W}|\boldsymbol{X}, \theta)$$
(4)

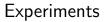
where $P(W|\mathbf{X}, \theta)$ is the posterior given by MMI or sMBR.

• Teacher-student training to sequence training

$$\widehat{\mathcal{L}(\theta)} = \mathcal{L}^{(sMBR)}(\theta) + p\mathcal{L}^{(KL)}(\theta).$$
(5)

where p is the regularization weight.

 J. Wong and M. Gales, "Sequence Student-Teacher Training of Deep Neural Networks," in Proc. Interspeech, 2016
 Y. Kim and A. Rush, "Sequence-Level Knowledge Distillation", in arXiv 2016 9 of 22

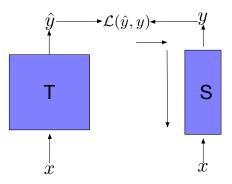


- AMI corpus 80h training data (28 million frames)
- Using the standard Kaldi recipe • fMLLR acoustic features
 - 3-gram language models
- CNTK was used to build HDNN models
- The same decision tree was used

Smaller model by highway networks

		eval		
Model	Size	CE	sMBR	
DNN- <i>H</i> ₂₀₄₈ <i>L</i> ₆	30 <i>M</i>	26.8	24.6	
$DNN-H_{512}L_{10}$	4.6 <i>M</i>	28.0	25.6	
DNN- <i>H</i> 256 <i>L</i> 10	1.7 <i>M</i>	30.4	27.5	
DNN- <i>H</i> ₁₂₈ <i>L</i> ₁₀	0.71 <i>M</i>	34.1	30.8	
HDNN- $H_{512}L_{10}$	5.1 <i>M</i>	26.5	24.1	
HDNN- <i>H</i> 256 <i>L</i> 10	1.8 <i>M</i>	27.9	25.0	
HDNN- $H_{128}L_{10}$	0.74 <i>M</i>	—	28.7	

[1] L. Lu and S. Renals, "Small-footprint Deep Neural Networks with Highway Connections for Speech Recognition," in Proc. Interspeech, 2016



TOYOTA CHICAGO AS OGICAL INS

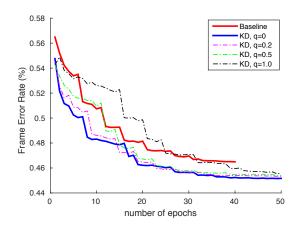
Teacher-Student Training

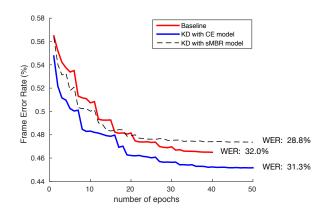
			WER	
Model	q	Т	eval	dev
$DNN-H_{128}L_{10}$	-	-	34.1	31.5
HDNN- $H_{128}L_{10}$ baseline	-	-	32.0	29.9
HDNN- <i>H</i> ₁₂₈ <i>L</i> ₁₀	0	1	31.3	29.3
HDNN- <i>H</i> ₁₂₈ <i>L</i> ₁₀	0.2	1	31.4	29.5
HDNN- $H_{128}L_{10}$	0.5	1	31.3	29.4
HDNN- <i>H</i> ₁₂₈ <i>L</i> ₁₀	0	2	32.3	29.9
HDNN- <i>H</i> ₁₂₈ <i>L</i> ₁₀	0	3	33.0	30.6

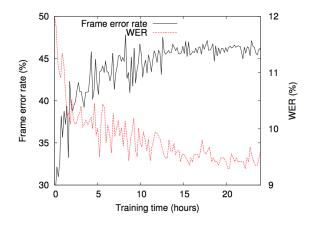
Table: Results of teacher-student training.

[1] G. Hinton et al., "Distilling the knowledge in a neural network," in Proc. NIPS workshop, 2015 $T: y_{jt} = \operatorname{softmax}(z_{jt}/T); \quad q: \mathcal{L}(\theta) = \mathcal{L}^{(KL)} + q\mathcal{L}^{(CE)}(\theta)$ [2] K. Markov and T. Matsui, "Robust speech recognition using generalized distillation

framework", in Proc. Interspeech 2016







[1]G. Heigold, et al., "Asynchronous stochastic optimization for sequence training of deep neural networks," in Proc. ICASSP, 2014 16 of 22

Experiments – Adaptation

- θ_c : parameters in the softmax layer
- θ_h : parameters in the hidden layers
- θ_g : parameters in the gate functions

Table: Results of unsupervised speaker adaptation.

			WER	(eval)
Model	Seed	Update	SI	SD
HDNN- <i>H</i> ₅₁₂ <i>L</i> ₁₀		θ_{g}	24.9	24.1
HDNN- <i>H</i> 256 <i>L</i> 10	sMBR		26.0	25.0
HDNN- <i>H</i> 512 <i>L</i> 10		$\{\theta_h, \theta_g, \theta_c\}$	24.9	24.5
HDNN- <i>H</i> 256 <i>L</i> 10			26.0	25.4

[1] L. Lu, "Sequence Training and Adaptation of Highway Deep Neural Networks," in Proc. SLT 2016

18 of 22

Table: Results of unsupervised speaker adaptation.

			ev	al
Model	Loss	Update	SI	SD
HDNN- <i>H</i> ₁₂₈ <i>L</i> ₁₀ -KL	KL	$\{\theta_h, \theta_g, \theta_c\}$	28.4	27.5
HDNN- <i>H</i> 128 <i>L</i> 10-KL	KL	θ_{g}	28.4	27.8
HDNN- <i>H</i> 128 <i>L</i> 10-KL	CE	$\{\theta_h, \theta_g, \theta_c\}$	28.4	27.7
HDNN- <i>H</i> ₁₂₈ <i>L</i> ₁₀ -KL	CE	θ_g	28.4	27.1

Where we are?

		eval		
Model	Size	CE	sMBR	
DNN- <i>H</i> ₂₀₄₈ <i>L</i> ₆	30 <i>M</i>	26.8	24.6	
$DNN-H_{512}L_{10}$	4.6 <i>M</i>	28.0	25.6	
DNN- <i>H</i> 256 <i>L</i> 10	1.7 <i>M</i>	30.4	27.5	
$DNN-H_{128}L_{10}$	0.71 <i>M</i>	34.1	30.8	
HDNN- <i>H</i> ₅₁₂ <i>L</i> ₁₀	5.1 <i>M</i>	26.5	24.1	
HDNN- <i>H</i> 256 <i>L</i> 10	1.8 <i>M</i>	27.9	25.0	
HDNN- $H_{128}L_{10}$	0.74 <i>M</i>	-	$28.7 \rightarrow 27.1$	

Conclusion

Teacher-student training + Highway networks

₩

Compact & Adaptable model

21 of 22

Thank you ! Questions?