
Addendum - autoencoder topologies

• CAE benefits from
– deeper network (more than AE)
– broader convolutional layers

• Using these fact, CAE outperforms AE in general
•MCT is still superior to autoencoders

Table 2: Setup of the artificially generated test sets

Dataset (genre) SNR levels Music styles included
Clean clean None

Test:Piano 10, 0,−10,−20 Classical piano
Test:Violin 10, 0,−10,−20 Piano and violin compositions
Test:Electro 10, 5, 0,−5 Ambient, dance, down-tempo, chillout or idm
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Figure 3: Dataset Test:Violin (unseen music genre, numbers in braces: unseen
SNR level)
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Electronic dataset: (unseen low SNR level, Figure 2)

• Baseline model: Decrease by 66.6% for SNR level -5 dB
• Robust techniques: improvement by 34.7%
•MCT performs better than AEs by up to 14.7%

Piano and violin: (unseen music and low SNR level, Figure 3)

• Baseline model: Decrease to 38.2% for SNR level 0 dB
• Robust techniques: improvement over baseline by 24.3%
•MCT more robust to unseen condition than AEs

Figure 2: Dataset Test:Electro (numbers in braces: unseen SNR level)
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Figure 1: Dataset Test:Piano (numbers in braces: unseen SNR level)
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Matched training-test conditions
Undistorted data: (Figure 1)

• Baseline model: 85.0% accuracy
• Robust techniques: Comparable (degradation 0.1 - 1.1%)

Piano dataset: (Figure 1)

• Baseline model: Decrease by 16.9% for SNR level 0 dB
• Robust techniques: Much lower degradation (1.3-2.2%)
• Comparable results of MCT and autoencoders

Electronic dataset: (Figure 1)

• Baseline model: Decrease by 46.1% for SNR level 0 dB
• Robust techniques: Improvement over baseline by up to 35.8%
•MCT achieves higher performance than autoencoders

Recognition engine

• One-pass speech decoder with time-synchronous Viterbi search
• Linguistic part:

– Newspaper language model : For simulated datasets
– Broadcast language model : For real-world datasets
– Lexicon: 550k entries (words and collocations)
– Bigram language model

Experiments

Test sets:

• Generated test set
– Speech duration: 2 hours 44 minutes (close-talk mic)
– Seen music genre: piano (8 minutes), electronic (40 minutes)
– Unseen music genre: piano and violin (144 minutes)
– Dataset replicated for each SNR level in Table 2

• Real-world dataset
– Distorted speech: 18 minutes of radio broadcasts
– Electronic music jingle is present at the background (approximate SNR
10dB).

Convolutional denoising autoencoder

• Feed-forward DNN
– Input: 11 feature maps of 39 distorted filter bank coefficients
– Target: Signal frame of clean speech, 39 filter bank coefficients
– Training set: The same as for multi-condition training
– Criterion: Mean square distance
– Normalization: Zero mean and unitary variance of inputs and targets
– Topology: 2 convolutional + max-pooling (factor of 3) + 2 full layers
– Convolutional kernel: covers 5 × 1 coefficients
– Feature maps: 13 × 39 and 39 × 13 elements

• DNN:
– Fully-connected feed-forward
– 5 hidden layers, 768 neurons each

• Baseline: Single-style training on undistorted instance of speech dataset

Training data

• Generated artificially by augmentation of clean speech
• Clean speech dataset:

– Language: Czech
– Duration: 132 hours

• Music dataset:
– Genres: Piano tracks and electronic music
– Duration: 11 hours 40 minutes

Considered Techniques for Robust ASR

Approaches:

• Multi-condition training of acoustic models (MCT)
– Architecture: Hybrid Hidden Markov Model - Deep Neural Network
– Neural network topology: Fully-connected feed-forward

• Denoising autoencoders for feature enhancement + training of acoustic
model on enhanced features (DAE)
– Architecture: Deep Neural Network
– Topology: Fully-connected and convolutional

Introduction
• Robust recognition of speech with background music
• Two approaches:
1. Multi-condition training of the acoustic models
2. Denoising autoencoders followed by acoustic model training on the pre-
processed data

• Both technique improve robustness of ASR significantly
– Artificial mixture, Signal-to-Noise Ratio (SNR) of 0 dB:
absolute improvement of accuracy 35.8%

– Real-world mixture, SNR about 10 dB:
absolute improvement of accuracy 2.4%

• Studied approaches do not deteriorate clean speech recognition:
about 1% decrease of accuracy

General acoustic model structure

Hybrid HMM-DNN:

• Underlying GMM: Context dependent, speaker independent, 2219 physical
states

• Features:
– Filter bank coefficients (frames 25 ms long with 10 ms shift)
– Applied Cepstral Mean Subtraction (window 1 s)
– Input of DNN: 11 concatenated frames

Motivation

Introduction:

• ASR: current research focused on robustness to environmental conditions
1. Distant microphones
2. Concurrent speech
3. Background interference

Our specific task:

• Robust recognition of speech
• Background interference: Music
• Application: online 24/7 monitoring of broadcast media

Multi-condition training of acoustic model

• Training dataset:
– Artificially created: Summation of clean speech with music
– Training database split into N parts
– Noise levels: Each part distorted with specific average SNR level

• Considered models:
– Piano 1: High SNR levels of piano music only
– Piano 2: Broad range of SNR levels with piano music
– Electronic: Electronic music resembles broadcast jingles

Table 1: Setup of the training set for multi-style acoustic models and respective
autoencoders

Dataset (genre) N SNR levels Music styles included
Piano 1 3 clean, 10, 5, 0 Classical piano
Piano 2 7 clean, 10, 5, 0,−5,−10,−15,−20 Classical piano
Elect. 1 3 clean, 10, 5, 0 Ambient, dance, down-tempo, chillout or idm

Fully connected denoising autoencoder

• Feed-forward DNN
– Input: 11 frames of 39 distorted filter bank coefficients
– Target: Signal frame of clean speech filter bank coefficients
– Training set: The same as for multi-condition training
– Criterion: Mean square distance
– Normalization: Zero mean and unitary variance of inputs and targets
– Topology: 3 hidden layers, 1024 neurons each

Mismatched training-test conditions
Piano dataset: (unseen low SNR level, Figure 1)

• Baseline model: Decrease by 68.6% for SNR level -20 dB
• Robust, mismatched train-test SNR: improvement by 38%
• Robust, matched train-test SNR: improvement by 55.9%

Real-world dataset

Radio broadcast: (unseen music, SNR level 10dB)

• Robust techniques improve by 2.4% over baseline
• Comparable results to Test:Piano at SNR level 10dB

Conclusions

1. The considered techniques are robust to music interference
2. MCT and autoencoders:

• comparable for matched conditions and simpler music
•MCT superior for mismatched conditions and complex music

3. Autoencoder topologies (equal number of hidden units):
• AE performs better in more complex scenarios
• CAE performs better in simpler scenarios and for lower SNR
• See Addendum for more details

4. Broader range of music during training results in robustness vs unseen genre
5. Broader range of SNR levels during training improves performance
6.MCT advantage: Simpler training procedure; single network
7. AE advantage: training data do not need to be labeled; easier training set
compilation


