

Achievable Rate and Optimal Signaling for an Optical Wireless Decode-and-Forward Relaying Channel

Guangtao Zheng, Qian Gao, Chen Gong and Zhengyuan Xu

Key Laboratory of Wireless-Optical Communications Chinese Academy of Sciences University of Science and Technology of China Hefei, China December 7, 2016

Outline

Background

- System model
- Symbol number filling algorithm (SNFA)
- Simulation results
- Conclusion

Optical wireless communication (OWC)

- Large transmission bandwidth
- Unregulated spectrum of light
- >Free of electromagnetic radiation
- Challenges for outdoor OWC
 - >Atmospheric turbulence-induced fading
 - Misalignment impairments
- Relay-assisted OWC (RA-OWC)
 - Introduce cooperative diversity
 - Extend the coverage
 - Improve link robustness

Capacity related research in RA-OWC

- Capacity bounds and relay placement (1-D)
- Input independent Gaussian noise
- Continuous input distributions
- Our contributions
 - Input-dependent Gaussian shot noise
 - Discrete input distributions
 - SNFA and optimal signaling
 - Relay placement over a 2-D plane

System model

Intensity modulation and direct detection (IM-DD)

Nonnegative constraint $X \ge 0, X_1 \ge 0$

Average power constraint $\mathbb{E}[X] \leq \varepsilon_1, \mathbb{E}[X_1] \leq \varepsilon_2$

Peak power constraint $\mathbb{P}[X > A_1] = 0$

 $\mathbb{P}[X > A_1] = 0$ $\mathbb{P}[X_1 > A_2] = 0$

Received signals

Relay node $Y_1 = h_{SR}X + \sqrt{h_{SR}X}Z_{1d} + Z_1$ Destination node $Y = h_{SD}X + h_{RD}X_1 + \sqrt{h_{SD}X} + h_{RD}X_1Z_{2d} + Z_2$ **Mutually independent Gaussian noises** Input independent $Z_1 \sim \mathcal{N}(0, \sigma_1^2)$ $Z_2 \sim \mathcal{N}(0, \sigma_2^2)$ Input dependent $Z_{1d} \sim \mathcal{N}(0, \varsigma_1^2 \sigma_1^2)$ $Z_{2d} \sim \mathcal{N}(0, \varsigma_2^2 \sigma_2^2)$

System model

Full duplex decode and forward (DF) relay protocol

Capacity with DF relaying protocol

 $C = \sup_{p(x,x_1)} \min(I(X,X_1;Y),I(X;Y_1|X_1)) \quad (*)$

Assumption: physical degradedness

 $p(y|x, x_1, y_1) = p(y|x_1, y_1)$

Challenges in RA-OWC

Channels are not generally physically degraded
Conditions for physical degradedness are hard to obtain
No closed form of (*)

Alternatives

- > Achievable rate maximization problem
- > (*) is an achievable rate
- Discrete input distribution

Symbol number filling algorithm

Rate maximization problem

 $R = \max_{\mathbf{Z}} \min(I(X, X_1; Y), I(X; Y_1 | X_1))$

Subject to: probability axioms, nonnegative inputs, average and peak power constraints

Compact vector form

 $\mathbf{Z} = [\mathbf{p}, \mathbf{q}, \mathbf{q}_1]$ \mathbf{p} : vectorized joint input distribution $\mathbf{Q} = [\mathbf{p}, \mathbf{q}, \mathbf{q}_1]$ \mathbf{q} : n_1 constellation points for the source $\mathbf{q}_1: n_2$ constellation points for the relay

 \succ n_1 and n_2 are fixed

Solved by standard heuristic optimization approach

Symbol number filling algorithm

Determine optimal constellation sizes

Near zero probability occurs when the number of mass points is greater than the optimal

For a given peak-to-noise ratio:

Symbol number filling algorithm

A Contraction of the second se

SNFA diagram

Simulation assumptions

Channel gains are proportional to 1/d² (d is the distance)
Node S and R have the same *input constraints* Node S and D have the same *noise variances*

Simulation settings

Simulation results

Achievable rates for various input-dependent noises

Simulation results

Constellation points for:

Simulation results

Relay placement over two-dimensional plane

Darker color: lower rate

٠

- > A more realistic RA-OWC model is studied
- > Optimal signaling & achievable rate via SNFA
- > DF relaying generally outperforms DT
- DF-preferred relay position given on 2-D plane

Thank you!

Q&A

Achievable Rate and Optimal Signaling for an Optical Wireless Decode-and-Forward Relaying Channel