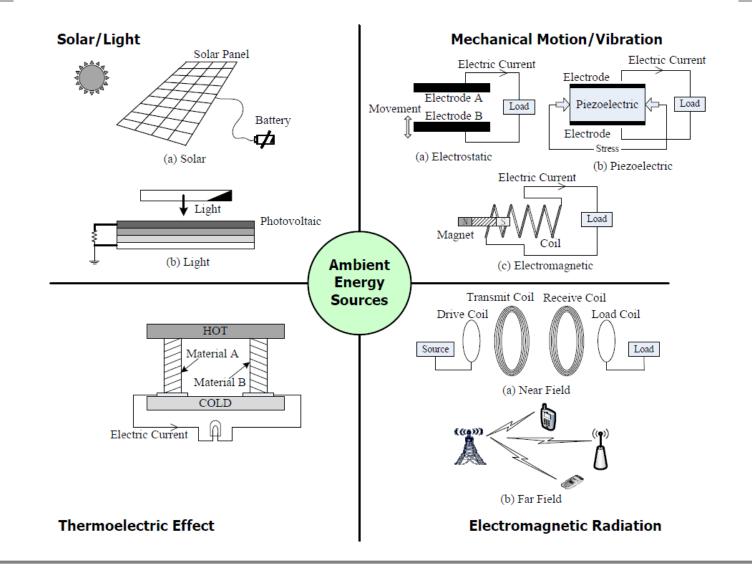
Outage Probability for Two-Way Solar-Powered Relay Networks with Stochastic Scheduling

Wei Li, Meng-Lin Ku, Yan Chen, K. J. Ray Liu

Department of Electrical and Computer Engineering, University of Maryland, College Park Department of Information and Communication Engineering, Xi'an Jiaotong University Department of Communication Engineering, National Central University

Classification of Energy Sources



Challenges and Motivation

- Key points(problems):
 - Randomness and uncertainty of harvested energy, how to model
 - Optimization of transmission policy, e.g., power allocation, time scheduling, modulation, etc.

Energy model	Algorithms	Math tools
Deterministic models (Non-causal)	Offline	Convex optimization
Stochastic models (Causal)	Online	Dynamic programming, optimal control

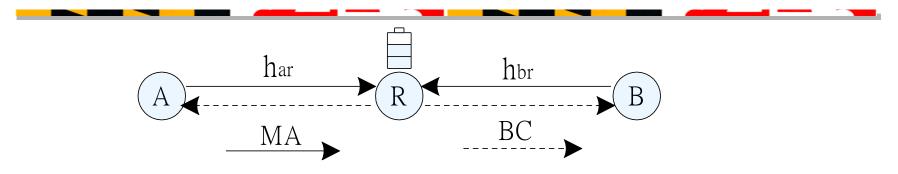
Ref: M.-L. Ku, W. Li, Y. Chen, and K. J. Ray Liu, "Advances in Energy Harvesting Communications: Past, Present, and Future Challenges", to appear in *IEEE Communications Surveys & Tutorials*.

Outline

Introduction

- Two-way energy harvesting relay networks
- Markov decision process with stochastic models
- Optimization of relay policy
- Structure of optimal relay transmission policy
- Performance analysis of outage probability

Two-way Energy Harvesting Relay Networks



> Node types:

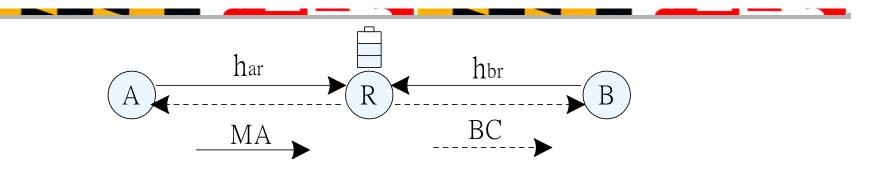
A and B are traditional wireless nodes; R is a solar EH wireless nodes

Relay cooperation protocol: Amplify-and-Forward (AF)

Channel assumptions:

- Wireless channels are quasi-static and Rayleigh flat fading;
- Channels are reciprocal
- RS has the channel state information (CSI) of all source-relay links;
- \succ All nodes are half-duplex.

Two-way Energy Harvesting Relay Networks



Some important variables

- $\gamma_1 = |h_{ar}|^2$ the random variable with exponential distribution,
- $\gamma_2 = |h_{br}|^2$ the random variable with exponential distribution
- R_1 : achievable data rate of link from A to B via R
- R_{th1} : target rate of link from A to B via R
- R_2 : achievable data rate of link from B to A via R
- R_{th2} : target rate of link from B to A via R
- $P(=P_a=P_b)$: the transmission power of A and B
- P_r : the transmission power of R

Outage Probability in TWR Networks

Link A-R-B:
$$R_1 = \frac{1}{2} \log \left(1 + \frac{\gamma_1 \gamma_2 P_a P_r}{N_0 \left(\gamma_1 P_a + \gamma_2 P_b + \gamma_2 P_r + N_0 \right)} \right),$$

Link B-R-A:
$$R_2 = \frac{1}{2} \log \left(1 + \frac{\gamma_1 \gamma_2 P_b P_r}{N_0 \left(\gamma_1 P_a + \gamma_2 P_b + \gamma_1 P_r + N_0 \right)} \right),$$

Outage Probability:
$$P_{out,AF} = \Pr \left\{ \mathcal{E}_{out,AF}^1 \bigcup \mathcal{E}_{out,AF}^2 \right\}$$

= $\Pr \left\{ \left(R_1 < R_{th1} \right) \bigcup \left(R_2 < R_{th2} \right) \right\}$

Outline

- Introduction
- Two-way energy harvesting relay networks
- Markov decision process with stochastic models
- Optimization of relay policy
- Structure of optimal relay transmission policy
- Performance analysis of outage probability

Markov Decision Process with Stochastic Models

 $\Box \text{ State space } \mathcal{S} = \mathcal{Q}_e \times \mathcal{H}_{ar} \times \mathcal{H}_{br} \times \mathcal{Q}_b$

solar energy harvesting state subspace: $Q_e = \{0, 1, \dots, N_e - 1\}$ channel state subspace: $\mathcal{H}_{br} = \{0, 1, \dots, N_c - 1\}$ $\mathcal{H}_{ar} = \{0, 1, \dots, N_c - 1\}$ battery state subspace: $Q_b = \{0, 1, \dots, N_b - 1\}$

 \Box Relay action space W

one energy quantum $E_u = P_u T$ relay transmission power subspace $\mathcal{W} = \{0, 1, \dots, N_p - 1\} (N_p \le N_b)$ $P_r = w P_u$

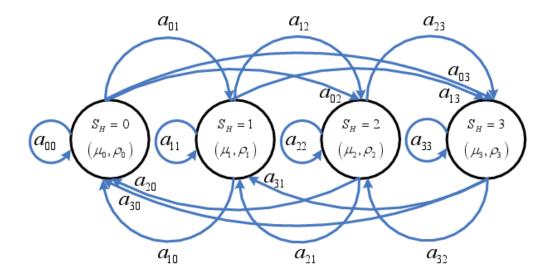
Reward function

condition outage probability, i.e., the outage probability conditioned on a fixed system state and relay action, especially the channel states

Stochastic Solar Power Model

N_e-state Gaussian mixture hidden Markov model

solar power per unit area: $P_H \sim \mathcal{N}(\mu_e, \rho_e), e \in \mathcal{S}_E = \{0, 1, \dots, N_e - 1\}$ solar state transition probability: $P(S_E = j | S_E = i) = a_{ij}$



Ref: M.-L. Ku, Y. Chen, and K. J. R. Liu, "Data-Driven Stochastic Transmission Policies for Energy Harvesting Sensor Communications," *IEEE J. Select. Areas Commun.*, vol. 33, no. 8, pp. 1505-1520, Aug. 2015.

Wei Li – Outage Probability for Two-Way Solar-Powered Relay Networks with Stochastic Scheduling 12/15/2015

Harvested Energy Storage

Harvesting-store-and-use (HSU) protocol

Quantization model

basic transmission power: P_U one basic energy quantum: $E_U = P_U \cdot \frac{T}{2}$

harvested energy during one policy period *T*: $E_H = P_H T s \eta$. EH probability in terms of the number of harvested energy quanta:

$$P(Q = q \mid S_E = e) \text{ for } q \in \{0, 1, \cdots, \infty\}$$

Battery State

Available energy quanta in the relay battery:

$$b \cdot E_U, \ b \in \mathcal{S}_B = \{0, 1, \cdots, N_b - 1\}$$

Battery transition model:

$$b' = b - w + q, w \in \{0, 1, \cdots, \min(b, N_p - 1)\}$$

Battery state transition probability under the solar state and relay action

$$P_{w}(S_{B} = b' | S_{B} = b, S_{E} = e) = \begin{cases} P(Q = b' - b + w | S_{E} = e), b' = (b - w), \dots, N_{b} - 2\\ 1 - \sum_{q=0}^{N_{b}-2-b+w} P(Q = q | S_{E} = e), b' = N_{b} - 1 \end{cases}$$

Ref: M.-L. Ku, Y. Chen, and K. J. R. Liu, "Data-Driven Stochastic Transmission Policies for Energy Harvesting Sensor Communications," *IEEE J. Select. Areas Commun.*, vol. 33, no. 8, pp. 1505-1520, Aug. 2015.

Wei Li – Outage Probability for Two-Way Solar-Powered Relay Networks with Stochastic Scheduling 12/15/2015 12/38

Channel State

 \succ N_c-state Markov chain

$$\Gamma = \left\{ 0 = \Gamma_0, \Gamma_1, \cdots, \Gamma_{N_c} = \infty \right\} \qquad S_{AR} = i \Leftrightarrow \gamma_{AR} \in \left[\Gamma_i, \Gamma_{i+1} \right)$$

Channel state stationary probability

$$P(H=i) = \int_{\Gamma_i}^{\Gamma_{i+1}} \frac{1}{\lambda} \exp\left(-\frac{\gamma}{\lambda}\right) d\gamma = \exp\left(-\frac{\Gamma_i}{\lambda}\right) - \exp\left(-\frac{\Gamma_{i+1}}{\lambda}\right).$$

> Channel state transition probability $h(\gamma) = f_D \sqrt{2\pi\gamma/\lambda} \exp(-\gamma/\lambda)$

$$P(H = j | H = i) = \begin{cases} \frac{h(\Gamma_{i+1})}{P(H = i)}, j = i+1, i = 0, 1, \dots, N_c - 2\\ \frac{h(\Gamma_i)}{P(H = i)}, j = i-1, i = 1, 2, \dots, N_c - 1\\ 1 - \frac{h(\Gamma_i)}{P(H = i)} - \frac{h(\Gamma_{i+1})}{P(H = i)}, j = i, i = 1, \dots, N_c - 2 \end{cases}$$

Ref: H. S. Wang and N. Moayeri, "Finite-State Markov Channel-A Useful Model for Radio Communication Channels," *IEEE Trans. Wireless Commun.*, vol. 44, no. 1, pp. 163–171, Feb. 1995.

System States

System state transition probability

$$S = (Q_e, H_{ar}, H_{br}, Q_b) \in \mathcal{S}$$

$$P_{w} \{ S = (e', h', g', b') | S = (e, h, g, b) \}$$

= $P(Q_{e} = e' | Q_{e} = e) \cdot P(H_{ar} = h' | H_{ar} = h) \cdot$
 $P(H_{br} = g' | H_{br} = g) \cdot P_{a} (Q_{b} = b' | Q_{b} = b, Q_{e} = e),$

\Box Relay action space w

one energy quantum $E_u = P_u T$ relay transmission power subspace $\mathcal{W} = \{0, 1, \dots, N_p - 1\} (N_p \le N_b)$

$$P_r = w P_u$$

Reward Function

Condition Outage Probability:

the outage probability conditioned on a fixed system state and relay action, especially the channel states.

When s = (e, h, g, b)

 $R_w(s) = \Pr \left\{ \text{outage} | w, s \right\} = P_{out}(w, f, h, g).$

 $P_{out}(w, f = 0, h, g) = \Pr\{\mathcal{E}_{out, AF}^{1} \cup \mathcal{E}_{out, AF}^{2} | P_{r} = wP_{u}, H_{ar} = h, H_{br} = g\},\$

Conditional Outage Probability in AF Mode

Theorem 1: Define four channel power thresholds as follows:

$$\begin{split} \gamma_{th1} &= \frac{(P+wP_u)N_0}{P\cdot wP_u} \left(2^{2R_{th1}} - 1 \right), \gamma_{th2} = \frac{N_0}{wP_u} \left(2^{2R_{th2}} - 1 \right), \\ \gamma_{th3} &= \frac{N_0}{wP_u} \left(2^{2R_{th1}} - 1 \right), \gamma_{th4} = \frac{(P+wP_u)N_0}{P\cdot wP_u} \left(2^{2R_{th2}} - 1 \right). \end{split}$$

The condition outage probability of TWR networks using AF cooperation protocol with respect to the system state s = (e, h, g, b) and relay transmission power w can be expressed as follows:

Case 1: $\gamma_{th1} \ge \Gamma_{h+1}$, or $\gamma_{th2} \ge \Gamma_{h+1}$, or $\gamma_{th3} \ge \Gamma_{g+1}$ or $\gamma_{th4} \ge \Gamma_{g+1}$,

$$P_{out}(w, f = 0, h, g) = 1;$$

Case 2: $\gamma_{th1} \leq \Gamma_h$, and $\gamma_{th2} \leq \Gamma_h$, and $\gamma_{th3} \leq \Gamma_g$ and $\gamma_{th4} \leq \Gamma_g$,

 $P_{out}\left(w,f=0,h,g\right)=0;$

Case 3: otherwise,

$$P_{out}\left(w,f=0,h,g\right)\approx 1-\frac{e^{-\max\left(\gamma_{th1},\gamma_{th2}\right)/\lambda}-e^{-\Gamma_{h+1}/\lambda}}{e^{-\Gamma_{h}/\lambda}-e^{-\Gamma_{h+1}/\lambda}}\cdot\frac{e^{-\max\left(\gamma_{th3},\gamma_{th4}\right)/\lambda}-e^{-\Gamma_{g+1}/\lambda}}{e^{-\Gamma_{g}/\lambda}-e^{-\Gamma_{g+1}/\lambda}}.$$

Outline

- Introduction
- Two-way energy harvesting relay networks
- Markov decision process with stochastic models
- Optimization of relay policy
- Structure of optimal relay transmission policy
- Performance analysis of outage probability

Optimization of Relay Policy

Define the policy $\pi(s): S \rightarrow W$ as the relay action in the state s

the expected discount long-term reward

$$V_{\pi}(s_0) = E_{\pi}\left[\sum_{k=0}^{\infty} \lambda^k R_{\pi(s_k)}(s_k)\right], \quad s_k \in \mathcal{S}, \quad \pi(s_k) \in \mathcal{W}.$$

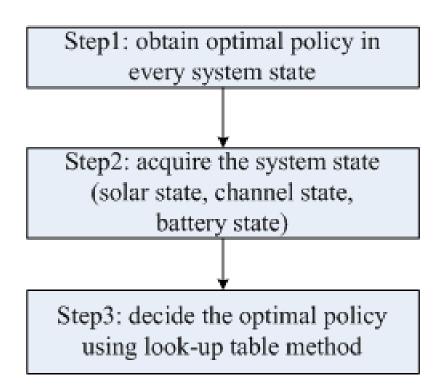
the optimal policy can be found through the Bellman equation

$$V_{\pi^*}(s) = \min_{w \in W} \left(R_w(s) + \lambda \sum_{s' \in S} P_w(s' \mid s) V_{\pi^*}(s') \right), \quad s \in \mathcal{S}.$$

the well-known value iteration approach can be applied to find the optimal policy

$$V_{w}^{i+1}(s) = R_{w}(s) + \lambda \sum_{s' \in S} P_{w}(s' \mid s) V^{(i)}(s'), \quad s \in S, \quad w \in \mathcal{W};$$
$$V^{i+1}(s) = \min_{w \in W} \left(V_{w}^{i+1}(s) \right), \quad s \in S.$$
$$\left| V^{i+1}(s) - V^{i}(s) \right| \le \varepsilon$$

Online Algorithm



Outline

- Introduction
- Two-way energy harvesting relay networks
- Markov decision process with stochastic models
- Optimization of relay policy
- □ Structure of optimal relay transmission policy
- Performance analysis of outage probability

Structure of Optimal Relay Transmission Policy

Lemma 1: For any fixed system state s = (e, h, g, b > 0) in the ith value iteration, the expected long-term reward is non-increasing in the battery state, and the differential value of the expected long-term rewards between two adjacent battery states is not larger than one, i.e.,

$$1 \ge V^{(i)}(e, h, g, b - 1) - V^{(i)}(e, h, g, b) \ge 0, \quad \forall b \in \mathcal{Q}_b \setminus \{0\}$$

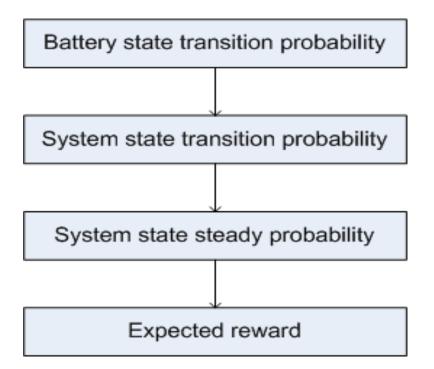
Lemma 2: For any fixed system state s = (e, h, g, b > 0) with the non-empty battery, in sufficiently high SNRs, i.e., N₀ approaches to zero, the optimal relay power action w^{*} is equal to one.

Outline

- Introduction
- Two-way energy harvesting relay networks
- Markov decision process with stochastic models
- Optimization of relay policy
- Structure of optimal relay transmission policy
- Performance analysis of outage probability

Expected Reward Analysis

Algorithm: Calculate the state steady probability and expected reward



$$\overline{R} = \sum_{s \in S} p_s \times R_{w^*} \left(s = \left(e, h, g, b \right) \right)$$

Theorem: In sufficiently high SNRs, the expected outage probability for the proposed optimal policy π^* is equal to the battery empty probability.

$$\bar{R} = \sum_{s \in \mathcal{S}} p_{\pi^*}(s) \times R_{w^* = \pi^*(s)}(s)$$

=
$$\sum_{s \in \mathcal{S}} \left[p_{\pi^*}(e, h, g, b = 0) \times R_{w^*}(e, h, g, b = 0) + p_{\pi^*}(e, h, g, b \ge 1) \times R_{w^*}(e, h, g, b \ge 1) \right]$$

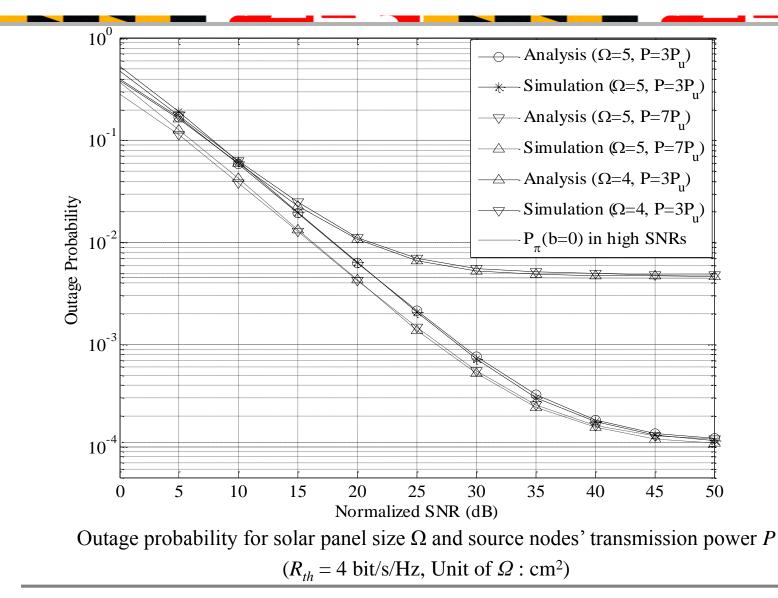
$$\lim_{N_0 \to 0} \bar{R} = \sum_{e=0}^{N_e - 1} \sum_{h=0}^{N_c - 1} \sum_{g=0}^{N_c - 1} p_{\pi^*}(e, h, g, b = 0) = P_{\pi^*}(b = 0)$$

Simulation Parameters

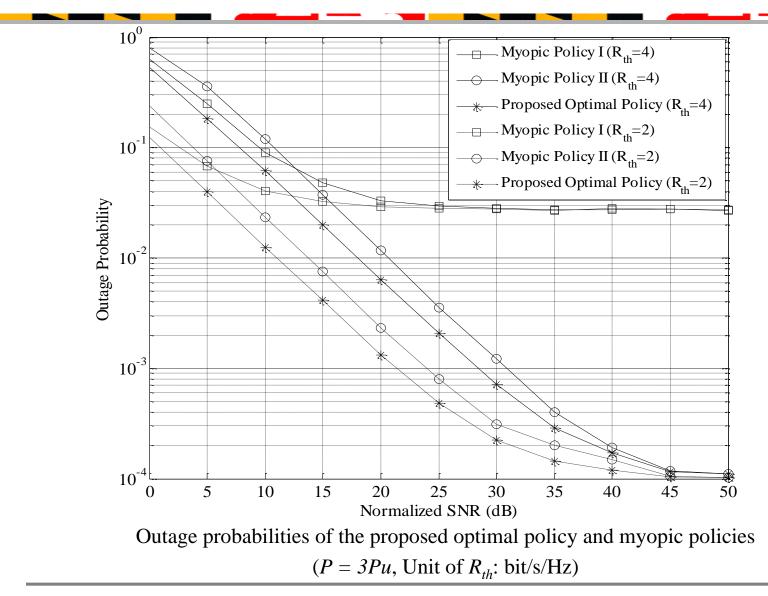
SIMULATION PARAMETERS

Basic transmission power (P_u)	35mW
Policy management period (T_M)	300s
Number of solar states (N_e)	4
Solar panel area (Ω)	$5 \mathrm{cm}^2$
Energy conversion efficiency (η)	20% [1]
Average channel power (θ)	1
Channel simulation model	Jakes' model
Number of channel states (N_c)	6
Channel quantization thresholds (Γ)	$\{0, 0.3, 0.6, 1.0, 2.0, 3.0, \infty\}$
Discount factor (λ)	0.99
Stopping criterion parameter (ε)	10^{-5}
Number of battery states (N_b)	12
Target rate proportion (σ)	0.5

Simulation Results of Optimal Outage Probability



Simulation Results of Optimal Outage Probability



Thank you!

