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Local Visual Features

m Starting point for many computer vision tasks
m Object recognition
m Content-based retrieval
® Image registration

m Two-steps approach:
m First step: keypoint detection (corners, blobs, etc.)
m Second step: descriptor extraction (SIFT, SURF, BRISK, etc.)

Greenkyesee ICASSP 2016  March 2016



Liocal features detection in video

m Most algorithms are tailored to still images

m For video, past literature targets the identification of keypoints
that are stable across time

m Stable features are key to object tracking, event identification and
video calibration (main goal: application accuracy)

m Stable features improve the efficiency of coding architectures
exploiting the temporal redundancy (main goal: minimize bandwidth)

m We target computational complexity

® Low power devices (smartphones, embedded systems, Visual Sensor

Networks) require the process of features detection to be both fast
and accurate
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Fast extraction from video |I

m Baseline approach: apply a feature detector on each frame Z,, of a
video sequence

m Inefficient from a computational point of view!

m Temporal redundancy is not exploited!

m Our approach: apply the feature detector only in regions of Z,,
that are sufficiently different from Z,,_1

m Compute a detection mask to identify such regions

= Reuse keypoints from Z,—1 outside those regions (keypoint
propagation from Z,,—1 to Z,,)
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Fast extraction from video

m Formally:
m LetD,, be the set of features extracted from frameIn (size N x Ny)

m Let dn,; € Dy be thei-th features of the set, computed in keypoint
location Pn,i

m Let M, € {0,1}"=*"v pe a binary detection mask defining the
regions of the frame where the detector should be applied

Dn — { Mn pn z) =1 U dn—l,j . Mn(pn—l,j) — O}

% N\
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Detection Mask

= How to compute the detection mask M., ?
= Need for a computationally efficient algorithm!

m We propose two alternatives:
m Intensity Difference Detection mask
m Keypoint Binning Detection Mask
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Intensity Difference Detection Mask

m Idea: apply a detection only to regions that vary sufficiently across
contiguous frames

m To this end, compute the absolute difference between
downsampled representations of two consecutive frames

m Already computed by the scale-space pyramid!

m If the difference in a given region is greater than a threshold,
perform detection in such a region

1 i |Lno(k, 1) — Lo1.0(k, )| < T7

ok, 1) =
Mn,o( ’ ) {O 1f|£n,o(k,l) —En—l,o(kal” > 7-[’

m Final mask obtained through upsampling
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Intensity Difference Detection Mask

Idea: apply a detector only to
regions of the image that
sufficiently vary across
contiguous frames.

threshold
4>
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Keypoint Binning Detection Mask

m Idea: apply a detection only to regions where features have been
found in previous frames

m To this end, compute a 2D spatial histogram of keypoints location

m If the number of keypoints in a spatial bin (of the previous frame)
is greater than a threshold, perform detection in such a region

1 if My (k1) > Tu

(k1) =
Malk, ) {o if M (K, 1) < Tir
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Keypoint Binning Detection Mask

Idea: apply a detector only to regions of the image where features
have been found in previous frames.
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Keypoint Binning Detection Mask

Idea: apply a detector only to regions of the image where at least N
features have been found in previous frames.
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Keypoint Binning Detection Mask

Idea: apply a detector only to regions of the image where features
have been found in previous frames.
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Keypoint Binning Detection Mask

Idea: apply a detector only to regions of the image where features
have been found in previous frames.
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Experiments

m Datasets:
m Stanford MAR dataset (4 sequences of cd covers under different imaging conditions)
m Rome Landmark dataset (10 sequences of different landmarks in Rome)
m Stanford MAR multiple object (4 sequences of different objects)

m Selected local features: BRISK (but our methods is generally appliable)

m Depending on the dataset, different accuracy measures:
m Matches-post-Ransac (MPR) for Stanford MAR dataset
m Mean of Average Precision (MAP) for Rome Landmark dataset
m Combined detection and tracking accuracy for Stanford MAR multiple objects

m Complexity is measured by means of the required CPU time
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Comparison with baselines
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Results — Stanford MAR
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Results — Rome Landmark Dataset
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Results — Stanford Multiple Object
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Conclusions

m Up to 35/40 % reduction in terms of computational complexity without
significantly reducing visual task accuracy

m Higher frame rates / lower power consumption on low-power devices
(smartphones, embedded systems)

Thank you!
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