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Introduction

Introduction

Higher brain functions depend on the balance between local
specialization (functional segregation) and global integration
(functional integration) of brain processes (Friston, 2011; Friston,
2001; Le Van Quyen, 2003; Stam, 2005; Tononi et al., 1998).
Imaging neuroscience (EEG, MEG, fMRI) has firmly established
functional segregation as a principle of brain organization in
humans.
The integration of segregated areas has proven more difficult to
assess.
Therefore, there is a need to identify task-related interactions
between neuronal populations.
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Introduction

Functional Connectivity

Cognitive control processes are
responsible for goal or context
representation and maintenance,
attention allocation and
stimulus-response mapping.
In particular, for cognitive control:

▸ Medial prefrontal cortex (mPFC) and
lateral prefrontal cortex (lPFC) play
an important role.

▸ Synchronization connects anterior
cingulate cortex (ACC) and lPFC
(Womelsdorf et al. 2014, Current
Biology).

Impaired cognitive control plays a role
in schizophrenia, impulse control and
anxiety disorders.
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Introduction

Dynamic Functional Connectivity Networks

Functional connectivity networks transition through
quasi-stationary microstates over time (Lehmann et al. 1997).
Current Approaches to network state representations:

▸ Sliding window FC analysis (Chang and Glover, 2010)
▸ k-means clustering (Allen et al. 2012)
▸ Principal Component Analysis (Leonardi et al. 2013)

Shortcomings: The intrinsic
network structure is not
preserved: Averaging,
Vectorizing.
Our solution: Tensors are
used to represent and
summarize functional
connectivity networks.
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Time-Frequency Phase Synchrony

Functional Connectivity: Phase Synchrony

Reduced-interference Rihaczek distribution (RID-Rihaczek):

Ci(t , ω) = ∫ ∫ exp(−
(θτ)2

σ
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Choi-Williams kernel

exp(j
θτ

2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Rihaczek kernel

Ai(θ, τ)e
−j(θt+τω)dτdθ. (1)

▸ Ambiguity function: Ai(θ, τ) = ∫ si(u + τ
2 )s

∗
i (u −

τ
2 )e

jθudu.

The phase distribution: Φi(t , ω) = arg [
Ci(t ,ω)
∣Ci(t ,ω)∣

].

The phase difference between the two signals can be defined as:
Φk
(i,j)(t , ω) = ∣Φk

i (t , ω) −Φk
j (t , ω)∣.

Phase locking value (PLV) quantifies the functional integration, as:

PLV(i,j)(t , ω) =
1
L
∣

L
∑
k=1

exp (jΦk
(i,j)(t , ω))∣ , 0 ≤ PLV ≤ 1. (2)
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Time-Frequency Phase Synchrony

Construction of d-FCNs

Functional connectivity matrix:

Gs,(i,j)(t) =
1
Ω

ωb

∑
ω=ωa

PLVs,(i,j)(t , ω), (3)

▸ G(i,j)(t) ∈ [0,1], [ωa, ωb]: frequency band of interest, Ω: the number
of frequency bins, s: the subject.
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Tensor Subspace Analysis

Overview of tensors

The extension of vectors and matrices to higher dimension is
called multiway array, or tensor.
X ∈ Rm1×m2×...×md is a d-way tensor, where xi1,i2,i3,...,id is its
(i1, i2, i3, . . . , id)th element.
Collection of the FC matrices of all subjects, Gs(t), forms
G(t) ∈ RN×N×S.
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Tensor Subspace Analysis

Tucker Decomposition

Tucker Decomposition is flexible in representing higher order data,
and has orthogonal component matrices.
Tucker decomposition is calculated using alternative least square
(ALS) method.

Tucker decomposition of X ∈ Rm1×m2×...×md :

X = C ×1 U(1) ×2 U(2) ×3 U(3) . . . ×d U(d) + E ,
X = ∑i1,i2,i3,...,id Ci1,i2,i3,...,id (u(1)i1

○ u(2)i2
○ u(3)i3

○ . . . ○ u(d)id
) + Ei1,i2,i3,...,id ,

(4)

▸ C ∈ Rr1×r2×...×rd is the core tensor.

▸ U(1) ∈ Rm1×r1 , U(2) ∈ Rm2×r2 , . . . U(d) ∈ Rmd×rd .

▸ E ∈ Rm1×m2×...×md is the residual.
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Tensor Subspace Analysis

Tucker Decomposition
continued

Figure: Tucker decomposition for a 3-way tensor.

n–mode product
n–mode product is multiplying the tensor unfolded along the nth mode
by a matrix.

X ×n U = U†X(n) =∑
in

xi1,i2,...,in,...,id Ujn,in (5)

Dec 2015 13 / 24



State Representation

Outline

1 Introduction

2 Time-Frequency Phase Synchrony

3 Tensor Subspace Analysis

4 State Representation
Subject Summarization
Time Summarization

5 Experimental Results

6 Conclusion and Future Work

Dec 2015 14 / 24



State Representation

Overview
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Figure: Functional connectivity state summarization algorithm flowchart.
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State Representation Subject Summarization

Subject Summarization

G(t) ∈ RN×N×S within the time interval t = 1,2, . . . ,T is fully
decomposed using Tucker decomposition:

G(t) = C(t) ×1 U(1)(t) ×2 U(2)(t) ×3 U(3)(t). (6)

Let’s define:
ζ(t) = C(t) ×1 U(1)(t) ×2 U(2)(t)→ G(t) = ζ(t) ×3 U(3)(t).
The subtensor θ(t) ∈ RN×N captures most of the energy of the
activation patterns across subjects at time:

θ(t) = ζi3=1(t) =
S
∑
s=1

U(3)s,1 (t)Gs(t). (7)
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State Representation Time Summarization

Time Summarization

θ(t), ∀t ∈ {1,2,⋯,T} are summarized across time mode to derive
the state connectome.
The 3-way tensor Θ ∈ RN×N×T is constructed from θ(t), and fully
decomposed using Tucker decomposition:

Θ = ϑ ×1 Ū(1) ×2 Ū(2) ×3 Ū(3) = ζ̄ ×3 Ū(3). (8)

The subtensor η = ζ̄i3=1 = ∑
T
t=1 Ū(3)t ,1 Θi3=t captures the largest

amount of energy across all time steps.
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State Representation Time Summarization

Significance Testing

The significant edges of η is
determined through hypothesis
testing.
A Gaussian distribution for the edge
values in η is assumed.
This assumption can be validated
using Kolmogorov–Smirnov test.
z-test is used on the edges of η to
determine the most significant edges.

H0 ∶ η(i , j) ∼ Nerp(µerp, σerp)

H1 ∶ η(i , j) ∼ N1(µ1 ≠ µerp, σ1 ≠ σerp)

Figure: The histogram of the
projected tensor edge values
in the matrix η for ERN.
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Experimental Results

EEG Data

Error-Related Negativity (ERN) occurs
50-100ms after subjects made errors in
response to a speeded motor task.
Modified Eriksen flanker task for 2 seconds
with multiple trials (10-40 error trials per
subject).
91 subjects, 63 electrodes collected from
undergraduates at the University of
Minnesota.
Sampling rate: 128 Hz.
ERN is dominated by partial phase-locking
of intermittent theta band (3-7 Hz) EEG
activity between mPFC and lPFC (Cavanagh
et al., 2009).
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Experimental Results

Experimental Results

Figure: The most significant edges of the network summarization matrix, η
with p = 0.95 for: (a) ERN, (b) CRN.
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Experimental Results

Experimental Results
Discussion

ERN time interval:
▸ Increased connectivity in medial- prefrontal regions, engaging

electrodes (F1, Fz, F2, FC1, FCz, FC2) → Engagement of these
regions during the ERN.

▸ Sparse connections from right lateral frontal to parietal and occipital
regions.

CRN time interval:
▸ Connectivity between right lateral frontal and left-temporal regions.
▸ Strong connections between left lateral frontal and parietal region.
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Conclusion and Future Work

Summary

We proposed a tensor based method for data reduction of
dynamic functional connectivity matrices across subjects.
Tensor-tensor projection along both directions can be used to
summarize the connectivity within different time intervals.

Future Work
Detect the change points instead of using a priori information to
define time intervals.
Extend this work to include the frequency information as the 5th
mode of the tensor.
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