

Reporter: Li Feiya SAIT Lab 2016.10.19

Outline

1. Introduction—Mandarin Four Tones

Distinctive F0 patterns of Chinese four tones.

1. Introduction— Difficulties of Japanese Learner in Acquiring Mandarin Tones

1. Introduction— Possible Main Reason

1. Introduction— Perceptual Training

- Perceptual trainings for foreigners learning Mandarin tones.
 - High Variability Phonetic Training (wang,1999&2003).
 - utilizing a wide range of highly variable natural syllables to make materials close to what happens in real-world speech processing.
 - Adaptive Training (Zou, 2012)
 - Synthesizing continua with the key acoustic cues continuously changing for training subjects to get native-like perception capability.
 - Hybrid Perceptual Training (Sun, 2013)

1. Introduction— Proposal

2.Experiment- Procedure

2.Experiment- Materials

Pre/mid/after-test	132 continua stimuli
	80 nature syllables
Adaptive training	132 Continua stimuli
High Variability phonetic Training	total 260 nature stimuli
generalization test (60 nature stimuli respectively)	new syllables
	New speakers

T1-T2&T1-T4 Continua

- □ Unequal 10 steps, 11stimuli of each pair da hua chuan
- **6 kind of syllabic structures**
- □ 11 stimuli * 6 syllabic structures * 2Tones di sui jian

2.Experiment- Japanese Subjects

	experimental group	control group
Number	8	8
gender	5 female 3 male	8 male
Average age	24-year-old	29-year-old
length of Chinese learning	1-month	3-month

3.Results- the Perceptual Model of Native Chinese Speaker

12 Native Chinese Speakers

2016/10/15

3.Results-Discrimination of continua

Results of perceiving T1-T2 continua before and after training,

Deviation scores of perceptual results of Chinese and Japanese in 3 tests: 0.25, 0.16, 0.12. 2

$$Z_{j} = \sqrt{\frac{1}{11}} \sum_{i=1}^{11} (S_{c,i} - S_{j,i})$$

3.Results-Discrimination of continua

Results of perceiving T1-T4 continua before and after training,

Deviation scores of perceptual results of Chinese and Japanese in 3 tests: 0.15, 0.08, 0.07.

$$Z_{j} = \sqrt{\frac{1}{11}} \sum_{i=1}^{11} (S_{c,i} - S_{j,i})$$

3.Results-Identification of natural syllables

Accuracy of natural syllables identification in

3.Results-Identification of natural syllables

 E_0

Two groups' average relative rate of progress of natural syllables in 3 tests. $R = \frac{E_1 - E_0}{E_1 - E_0}$

4.Conclusion

- Hybrid perceptual training could improve Japanese listeners' perceptual ability of T1-T4 and T1-T2 in isolated Mandarin words.
- □ The ability could generalized to new materials.
- Discrimination of T1-T4 pairs are much easier than T1-T2 pairs for Japanese subjects.

Thanks for your attention! Q&A