The Sequential Attack against Power Grid Networks

Yihai Zhu, Jun Yan, Yufei Tang, Yan (Lindsay) Sun, Haibo He

Presenter: Yan (Lindsay) Sun Associate Professor at University of Rhode Island Email: yansun@ele.uri.edu

THE UNIVERSITY OF RHODE ISLAND

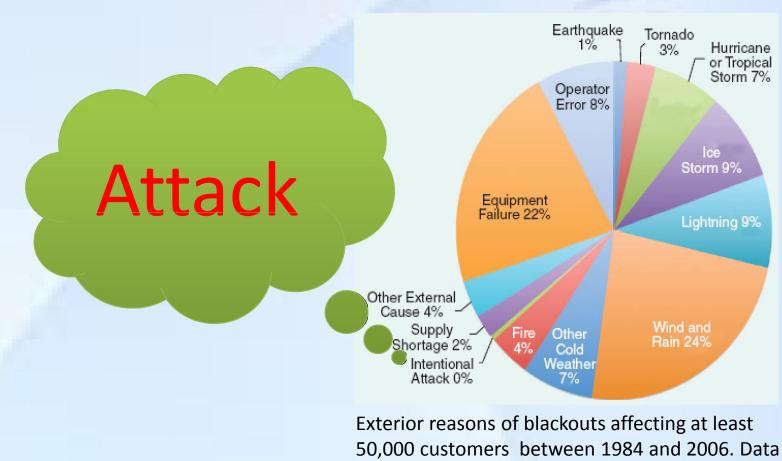
Massive Blackouts

The Electric Grid

- Critical infrastructure
- Complicated cyber-physical systems
- Experiences of power outages

Massive Blackouts

- Large-scale power outage
- Affecting millions of people
- Tremendous economic loss


* Northeast Blackout in 2003 [1]

- 50 million people
- 10 billion U.S. dallor

Northeast blackout of 2003

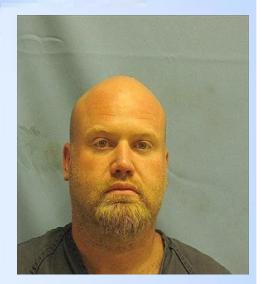
Main Causes

from NERC records. [2]

Media Report

Truthstream Media (August 30, 2013)

"The former DHS chief Janet Napolitano says: Cyber Attack Will Bring Down Power Grid: 'When Not If' "


The Wall Street Journal (February 5, 2014)

"Assault on California Power Station Raises Alarm on Potential for Terrorism"

Two Real-life Cases

Case I: The attack from an individual

- On Oct. 6, 2013, a man attacked a high-voltage transmission line near Cabot, Arkansas, USA.
- 10,000 customers lost power as a result.

Jason Woodring

Case II: The attack from a team

- At the mid night on Apr. 16, 2013, a team of armed people shot on a transmission substation near San Jose, California, USA.
- I7 giant transformers were knocked out, and this substation was closed for a month.

Power Grid Information Collection

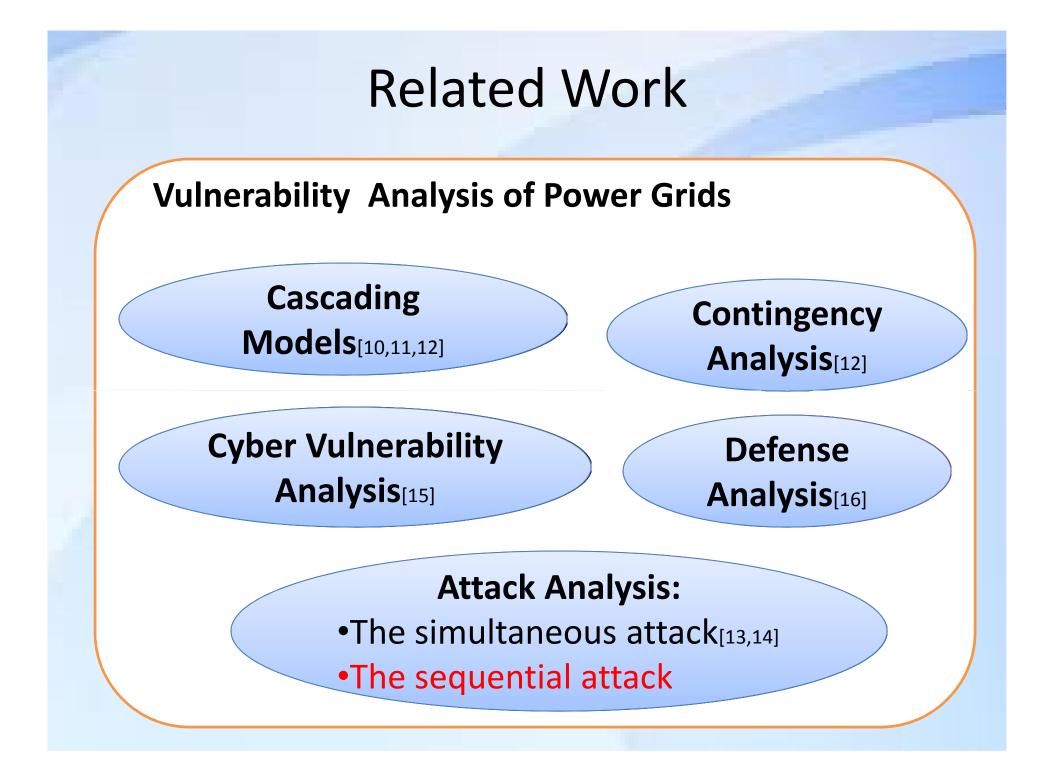
Ways of Information Collection

- Online tools
- Purchasing the grid's information
- Hacking or spying
- Online tools are useful to collect the topological information.
 - Google Maps
 - Online websites
 - Topology of the high-voltage transmission lines in U.S.

Substation from Google Map

Visualizing the U.S. Electric Grid

Outline


- >Background
- >Related Work
- >The Sequential Attack
 - Motivation & Challenge
 - Cascading Failure Simulator
 - A Case Study
 - Vulnerability Analysis
 - Metric Study
- Summary & Future Work

Outline

>Background
>Related Work

>The Sequential Attack

- Motivation & Challenge
- Cascading Failure Simulator
- A Case Study
- Vulnerability Analysis
- Metric Study
- Summary & Future Work

Outline

>Background

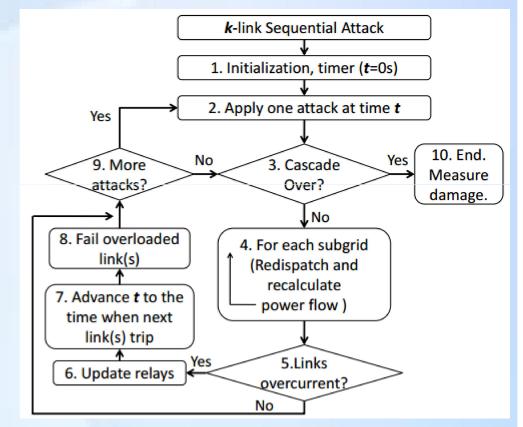
>Related Work

The Sequential Attack

- Motivation and Challenge
- Cascading Failure Simulator
- A Case Study
- Vulnerability Analysis
- Metric Study
- Summary & Future Work

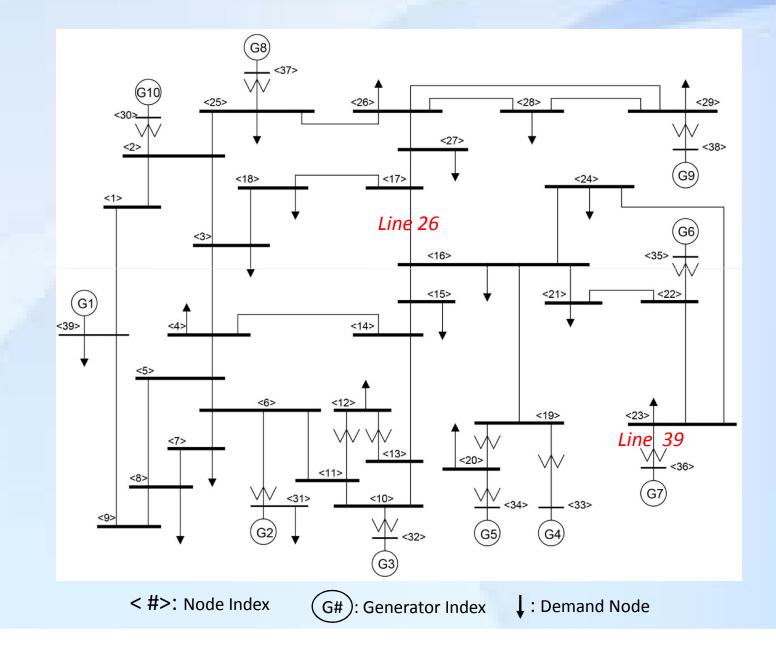
The Sequential Attack

Motivation


- The attackers are able to launch multiple-target attacks sequentially, but not simultaneously.
- Provide a new angle to conduct the vulnerability analysis of power transmission systems.

* Challenges

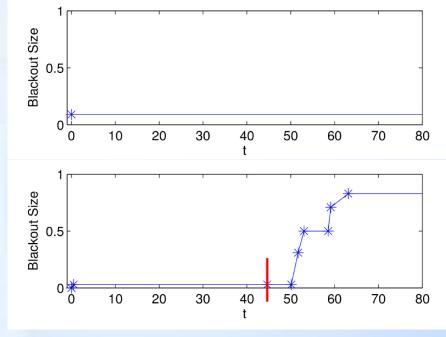
- Developing the cascading failure simulator
- Mimicking sequential attacks
- Conducting vulnerability analysis
- Studying metrics to find strong sequential attacks


Cascading Failure Simulator

- DC power-flow model
- ✤ Blackout size → damage
- Ten steps
 - Step 1: Initialization
 - Step 2: Apply an attack,
 - Step 3: Check "Stop simulator",
 - Step 4: Redispath power and recalculate power flows,
 - Step 5: Check "Overloading",
 - Steps 6,7,8: Trip one overcurrent line,
 - Step 9: Check "More Attacks",
 - Step 10: Evaluate damage.

Flowchart of cascading failure simulator

IEEE 39 Bus System


A Case Study

A case study on the combination of lines 26 and 39

- The simultaneous attack: upper subplot
- The sequential attack : lower subplot
- Blue-star points stand for a line trip.

Observation

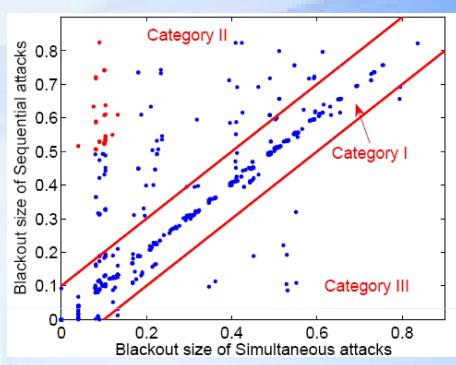
The sequential attack can discover new vulnerability of power systems.

The case study

Vulnerability Analysis

* Concept

- Test benchmark: IEEE 39 bus system that has 39 substations and 46 transmission lines.
- Damge evaluation: Blackout size (λ)
- Analysis on transmission lines


* Demonstration

- Two-line combinations : 1035
- For each two-line combination, obtaining
 - Its sequential attack strength: λ_{seq}
 - Its simultaneous attack strength: λ_{sim}
- Plot λ_{seq} v.s. λ_{sim} to reveal the relationship between the sequential attack and the simultaneous attack.
- Each dot in the figure represents an two-line combination.

Discovery

Red dots

- These dots reprent that the non-vulnerable combination of links that corresponds to a weak simultaneous attack can become highly vulnerable when the sequential attack is considered.
- Three categories
 - Category II: the sequential attack is much stronger than the simultaneous attack.
 - There are more strong sequential attacks than strong simultaneous attacks

Relationship between the sequential attack and the simultaneous attack

$$\begin{array}{|c|c|} \hline & \text{Category I} : | \lambda_{\text{seq}} - \lambda_{\text{sim}} | \leq \theta \\ \hline & \text{Category II} : \lambda_{\text{seq}} - \lambda_{\text{sim}} > \theta \\ \hline & \text{Category III} : \lambda_{\text{seq}} - \lambda_{\text{sim}} < -\theta \\ \hline & When : \theta = 0.1 \end{array}$$

k-link	Category I	Category II	Category III
k = 2	85.6%	13.14%	1.26%
k = 3	69.57%	28.83%	1.6%
k = 4	52.45%	46.24%	1.32%

More experiments and analysis on three-line or four-line combinations

- Two-line combination: 1035 (Category I: 85.6%, Category II: 13.14%, Category III: 1.26%)
- Three-line combinations (15,180)
- Four-line combinations (163,185)

Observation

- The sequential attack can be stronger than the simultaneous attack.
- As k increases, Category II becomes increasingly dominant.

Metric Study

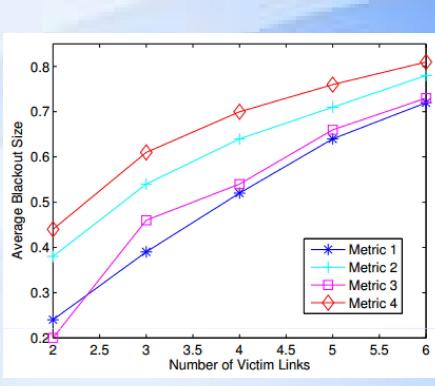
☆ Goal

 It is to study existing metrics to find whether metric(s) can help to reduce the search space for finding strong sequential attacks.

Four existing metrics

- Metric 1: Random selection, determining candidate links by randomly choosing among all links.
- Metric 2: Generator-connection, selecting the links that are connected with generators as candidate links.
- Metric 3: Degree, choosing candidate links by ranking degree values of links from high to low.
- Metric 4: Load, choosing candidate links by ranking load values of links from high to low.

Experiment


- 11 lines for Metric 2, because
 11 lines are originally
 connected with generators.
- 11 lines for Metrics 3 and 4.
- Conducting *k*-line sequential attacks, where *k* is set be 2, 3, 4, 5 and 6, respectively.
- Randomly chooing *k* lines for each metric.
- 1000 times and average results.

Observation

- Metric 4: load
 - Strong performance
 - Reducing search space

Comparison of the search space between metric 1 and metric 4

	k = 2	k = 3	k = 4	k = 5	k = 6
$\frac{\text{Metric 1}}{\binom{46}{k}}$	1,035	15,180	163,185	1,370,754	9,366,819
Metric 4 $\binom{11}{k}$	55	165	330	462	462

Performance Comparison

Summary & Future Work

*Summary

- Discover the sequential attack scenario against power transmission systems.
- Discover many new vulnerabilities.
- Investigate four existing metrics on reducing the search space to find strong sequential attacks.

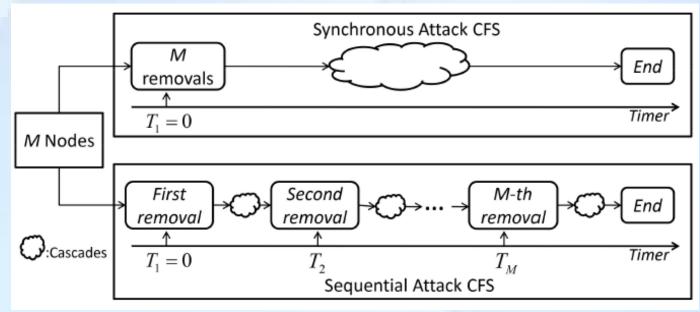
Future Work

- Investigate the sequential attack on substations.
- Investigate the sequential attack strategy.

Reference

- 1. U.S.-Canada Power System Outage Task Force, "Final report on the august 14, 2003 blackout in the united states and canada: Causes and recommendations," Apr. 2004.
- Paul Hines, "Cascading failures in power grids", IEEE Potentials, vol. 28, no. 5, pp. 24–30, 2009
- 3. "FBI, joint terrorism task force arrest suspect in arkansas power grid attacks," 2013. [Online]. Available: <u>http://www.forbes.com/</u>
- 4. R. Smith, "Assault on california power station raises alarm on potential for terrorism," Feb.18 2014. [Online]. Available: <u>http://online.wsj.com/</u>
- 5. C.-C. Liu, A. Stefanov, J. Hong, and P. Panciatici, "Intruders in the grid," IEEE Power and Energy Magazine, vol. 10, no. 1, pp. 58{66, Jan. 2012.
- 6. M. Levine, "Outgoing dhs secretary janet napolitano warns of serious cyber attack, unprecedented natural disaster," Aug.27 2013. [Online]. Available: http://abcnews.go.com/.
- "Small-scale power grid attack could cause nationwide blackout, study says," Mar.13 2014.
 [Online]. Available: FoxNews.com
- J. Tollefson, "US electrical grid on the edge of failure," Nature News and Comment, Aug.25 2013
- 9. A. Kredo, "U.S. electric grid inherently vulnerable to sabotage," Apr.8 2014. [Online]. Available: http://freebeacon.com/author/adam-kredo/

- 10. S. Mei, X. Zhang, and M. Cao, Power Grid Complexity. Beijing: Tsinghua University Press, 2011.
- 11. E. Bompard, D. Wu, and F. Xue, "Structural vulnerability of power systems: A topological approach," Electrical Power Systems Research, vol. 81, pp. 1334–1340, 2011.
- 12. M. Vaiman, et al, "Risk assessment of cascading outages: Methodologies and challenges," IEEE Transactions on Power Systems, vol. 27, no. 2, pp. 631-641, 2012.
- 13. W. Wang, Q. Cai, Y. Sun, and H. He, "Risk-aware attacks and catastrophic cascading failures in U.S. power grid," in IEEE Global Telecommunications Conference, Houston, TX, USA, Dec.5-9 2011.
- 14. P. Hines, E. Cotilla-Sanchez, and S. Blumsack, "Do topological models provide good information about electricity infrastructure vulnerability?" Chaos, vol. 20, no. 3, 2010.
- 15. Hahn, A.; Ashok, A.; Sridhar, S.; Govindarasu, M., "Cyber-Physical Security Testbeds: Architecture, Application, and Evaluation for Smart Grid," *Smart Grid, IEEE Transactions on*, vol.4, no.2, pp.847,855, June 2013
- 16. M X. Liu, K. Ren, Y. Yuan, Z. Li, and Q. Wang, "Optimal budget deployment strategy against power grid interdiction," in INFOCOM, 2013 Proceedings IEEE, Turin, Italy, Apr.14-19 2013.


The simultaneous attack versus the sequential attack

The simultaneous attack

Conduct multiple removals simultaneously.

The sequential attack

Conduct multiple removals in the predefined sequence.

Comparison between the simultaneous attack and the sequential attack

Summary of typical works in studying the attacks against power systems

	1.0	Single-node	Multiple-node	Multiple-node
Attack Strategy		Synchronous	Synchronous	Sequential
Rando	Random removal [25]		✓	
Search-based approaches [4]		√	√	
	Degree [25]	√	√	
	Load [21]	✓	\checkmark	
Attack	RIF [9]	 ✓ 	\checkmark	
metrics	LDV [10]		~	
metries	Geographic			
	information [12]		v	
	RG [11]	✓	\checkmark	
	Proposed			1
	work			×

Models of Cascading Failures

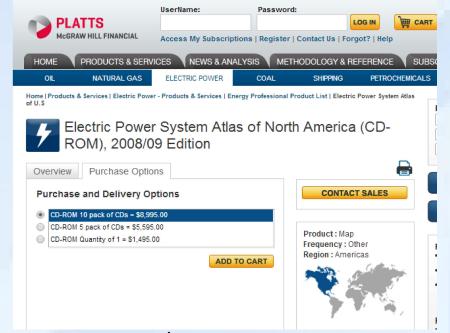
CASCADE mode	• Topology	 Identical components Randomly choosing load values between a range Overloading when the load exceeds a threshold. 	Hines model	 Topology Substation type Line impedance DC power flows 	 Calculating DC power flows Generation dispatch and load shedding Trip lines due to overheat. Blackout Size
Wang-Rong model	• Topology	 Identical components Using the degree to calculate load Overloading when the load exceeds the capacity. The capacity is proportional to the initial load. Identical components 	OPA model	 Topology Substation type Line impedance DC power flows Probability of line failure 	 Calculating DC power flows Generation dispatch and load shedding Trip lines with probability. Both fast and slow dynamics
Motter-Lai model	• Topology	 Calculating the betweenness as the load Overloading when the load exceeds the capacity The capacity is proportional to the initial load. 	Hidden failure model	 Topology Substation type Line impedance DC power flows Probability of line failure 	 Calculating DC power flows Generation dispatch and load shedding Trip lines with probability. Hidden failures
Betweenness model	• Topology	 Identical components Calculating betweenness to calculate the load Overloading when the load exceeds a threshold. 	Manchest er model	 Topology Substation type Line impedance AC power flows 	 Calculating AC power flows Tripping lines System convergence Fast dynamics
Efficiency model	TopologySubstation type	 Calculating the betweenness as the load. Overloading components can be recovered. Network efficiency 			
Extended model	TopologySubstation typeLine impedance	 Calculating the extended betweenness as the load, based on PTDFs. Overloading when the load exceeds the capacity. Net-ability 			

Attackers and Means of Attacks

Attackers

- Disgruntled individuals
- Terrorist teams
- Computer hackers
- Energy companies
- Hostile Countries
- Attacker can be from inside and outside.
- Attackers can well organize the attacks, aiming to cause large damage.

Means of Attacks

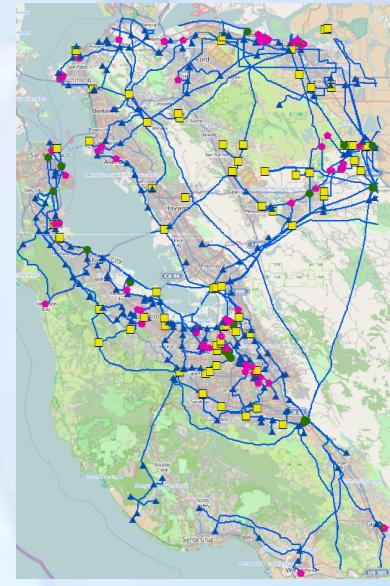

- Physical sabotages
 - Failing down poles that support high-voltage transmission lines.
 - Cutting a tree to fail a line
 - Fire on substations
 - Air force attacks
 - EMP attacks
 - Etc.
- Cyber intrusions
 - Cyber attacks
 - Cyber worms
 - Etc.

Cyber Attacks

Simulated Cyber Attack

- Name: Aurora Generator Test
- Participants : Idaho National Laboratories (INL) and Department of Homeland Security, USA
- Time: 2007
- Object: A large diesel-electric generator
- Procedure: Researchers sentmalicious commands to force the generator overheat and shut down.
- Results: the generator was completely destroyed.
- Effects: Cyber vulnerabilities of many generators that are currely in use in USA.

Commercially Available



Platts.com

GIS raw data

FID	Shape	CHARID	NAME	COMPANY	COMPID	MAXKV	CIRCUITS	POS_REL	SUBID	ASTATUS
0	Point	3337420229	Pajaro Valley	Unknown	-99	0	0	Not verified to be within 1 mile	3337420229	-1
1	Point	3337432042	Watsonville	Pacific Gas and Electric Co.	100540	69	3	Within 40 feet	3337432042	9
2	Point	3337432043	Watsonville Cogeneration Partn	Unknown	-99	69	0	Not verified to be within 1 mile	3337432043	-1
3	Point	3337408226	Buena Vista Landfill	Unknown	-99	0	0	Not verified to be within 1 mile	3337408226	-1
4	Point	3365669834	Buena Vista Landfill		-99	0	0	Not verified to be within 1 mile	3365669834	-1
5	Point	3341135614	Тар	Pacific Gas and Electric Co.	100540	69	3	Within 1 mile	3341135614	8
6	Point	3341135615	Erta	Pacific Gas and Electric Co.	100540	69	1	Within 1 mile	3341135615	8
7	Point	3337413924	Green Valley	Pacific Gas and Electric Co.	100540	115	7	Within 40 feet	3337413924	8
8	Point	3337426023	Тар	Pacific Gas and Electric Co.	100540	115	3	Within 40 feet	3337426023	8
9	Point	3337422061	Rob Roy	Pacific Gas and Electric Co.	100540	115	1	Within 40 feet	3337422061	8
10	Point	3337420437	Paul Sweet	Pacific Gas and Electric Co.	100540	115	2	Within 165 feet	3337420437	8
11	Point	3337429483	UC Santa Cruz Cogeneration	Unknown	-99	0	0	Not verified to be within 1 mile	3337429483	-1
12	Point	3360294987	Unknown		-99	-99	1	Within 40 feet	3360294987	7
13	Point	3337413473	Gilroy (CPN)	Pacific Gas and Electric Co.	100540	115	3	Within 40 feet	3337413473	9
14	Point	3337413474	Gilroy Energy Co.	Pacific Gas and Electric Co.	100540	10	1	Within 40 feet	3337413474	-1
15	Point	3337416916	Llagas	Pacific Gas and Electric Co.	100540	115	3	Within 1 mile	3337416916	8
16	Point	3337426018	Тар	Pacific Gas and Electric Co.	100540	115	3	Within 40 feet	3337426018	8
17	Point	3337426019	Тар	Pacific Gas and Electric Co.	100540	115	3	Within 165 feet	3337426019	8
18	Point	3341135624	Lone Star		-99	69	1	Within 40 feet	3341135624	8
19	Point	3341135625	Тар	Pacific Gas and Electric Co.	100540	69	3	Within 40 feet	3341135625	8
20	Point	3337408555	Camp Evers	Pacific Gas and Electric Co.	100540	115	2	Within 1 mile	3337408555	8
21	Point	3341135626	Crusher	Pacific Gas and Electric Co.	100540	69	1	Within 1 mile	3341135626	8
22	Point	3341135627	Pt. Moretti	Pacific Gas and Electric Co.	100540	69	1	Within 1 mile	3341135627	8
1	A 1 4		-	A 16 A 16 A 1 A			-	LINE LOF C. L		~

Bay Area power grid

