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Summary

• Separation of music into instruments (“bass”, “drums”, “other”, “vocals”)

• Two network architectures are described: feed-forward and recurrent

I Each of them yields state-of-the art results on SiSEC DSD100
I We blend both architectures to further improve performance

− Linear combination of raw outputs and MWF post-processing
− Gives the best results that have been reported so far on DSD100

• We study the effect of data augmentation for the recurrent architecture

I Experiment shows that even simple architectures can overfit
I Data augmentation during training avoids problem

Introduction

• Music Source Separation (MSS) = Separation of music into instrument tracks

I Received increasing attention over the last years
I Many applications require MSS: Karaoke, Upmixing, ...

• Popular MSS contest: Signal Separation Evaluation Campaign (SiSEC)

I Regularly held source separation contest
I Most popular separation subtask: Professionally-mixed music

− Goal: Separate music into “bass”, “drums”, “other” and “vocals”
− Train/test dataset consists of 50 songs each

• Contribution of this paper is three-fold

I Description of our submissions to SiSEC 2016 contest
− Results for feed-forward approach [1] with MWF post-processing
− Results for new recurrent network structure (bi-directional LSTM)

I Proposal of using data augmentation for training
− Avoids overfitting to training data
− Esp. important for recurrent nets as they only use DSD100 Dev

I Blending of two networks before MWF post-processing
− Considerably improves performance
− Gives best results on DSD100 Test that have so far been reported

MSS using Deep Neural Networks

• Signal model for music source separation

x(n) = sB(n) + sD(n) + sO(n) + sV(n) =
∑

i∈I
si(n)

• Notation
x(n), si(n), ŝi(n) ∈ R

2 . . . Stereo mixture/sources/source estimates in
time domain with I := {B,D,O,V}
denoting bass, drums, other and vocals

X(m, f ), Si(m, f ), Ŝi(m, f ) ∈ C
2

. . . Stereo mixture/sources/source estimates in
STFT domain

General DNN Approach

• Instrument extraction using deep neural networks
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• Multi-channel Wiener filter

I Important post-processing step that improves performance
I Reduces flanging effects that can appear for single-channel WF
I Assumed signal model [2]

X(m, f ) = Si(m, f ) + Zi(m, f )

with i ∈ I, Zi(m, f ) =
∑

j∈I\iSj(m, f ) and

Si(m, f ) ∼ CN (0, vi(m, f )Ri(f )) where vi(m, f ) is the power-spectral
density (PSD) and Ri(f ) the time-invariant spatial covariance matrix.
− Hence, we assume a time-invariant, convolutive mixture
− Reasonable for majority of music mixtures

I MMSE estimator for Si(m, f ) from X(m, f ) is

Ŝi(m, f )=vi(m, f )Ri(f )

(

∑

j∈I
vj(m, f )Rj(f )

)−1

X(m, f )

I PSDs and spatial covariance matrices are estimated from M consecutive
frames as [2, 3]

v̂i(m, f )=
1

2
‖Ŝi(m, f )‖2, R̂i(f )=

∑M
m=1 Ŝi(m, f )Ŝi(m, f )H

∑M
m=1 v̂i(m, f )

− Weighted version of classical ML estimator
− More weight put on TF bins for which we expect better SNR

Feed-Forward Networks (FNN)

• First approach: feed-forward architecture [1]
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• FNN-1: previous submission to SiSEC 2015

I Structure: ReLU network with K = 3 layers
I Training material

− P = 2 · 106 training samples which are randomly generated
− Short instrument loops which are independent of DSD100

I Input: FFT size is 1 024, C = 3 non-overlapping context frames
I Post-processing: single-channel Wiener filter

• FNN-2: newly trained network with following changes regarding FNN-2

I Structure: ReLU network with K = 4 layers
I Training material: P = 1.2 · 107 samples where we additionally use non-

bleeding stems from MedleyDB and stems from SiSEC Dev
I Input: C = 8 overlapping context frames with PCA pre-processing

• Comparison of the two sets of DNNs

I Lower baseline: ŝi(n) =
1
4x(n)

I Upper baseline: Ideal ratio mask
I Estimate of accompaniment given by ŝA(n) = x(n)− ŝV(n)

Network
SDR in dB

Comments
Bass Drums Other Vocals Acco.

BL 0.72 0.95 1.43 0.35 6.82 lower baseline: mix as separations

BU 6.26 7.96 7.76 10.16 16.38 upper baseline: ideal ratio mask

FNN-1 2.22 3.08 2.48 3.63 10.19 UHL1 from SiSEC 2015

FNN-2 2.54 3.75 2.92 4.47 11.12

BLSTM-1 2.30 3.71 2.98 3.69 10.33 one BLSTM layer

BLSTM-2 2.77 3.78 3.44 4.91 11.35 two BLSTM layers

BLSTM-3 2.89 4.00 3.24 4.86 11.26 three BLSTM layers

Table 1: FNN and BLSTM networks on Test part of DSD100
I Observation: FNN-2 on average 0.6 dB better in SDR

(using SiSEC Dev: +0.4 dB, using multi-channel WF: +0.2 dB)

Bidirectional LSTM Networks

• Second approach: Recurrent architecture with bidirect. LSTM layers

I Better incorporation of context information than supervectors
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• We trained three architectures which differ in #BLSTM layers

I Each BLSTM layer consists of 250 forward/backward LSTM cells
I Input: stereo magnitude frames (frame size: 1 024, overlap: 50%)
I Post-processing: multi-channel Wiener filter

• Results: see Table 1

Data Augmentation during Training

• Data augmentation is known to improve performance of DNNs

• We use the following data augmentation techniques on the fly when we create
a mini-batch (mini-batch size: 10, sequence length: 500):

I random swapping left/right channel for each instrument,
I random scaling with uniform amplitudes from [0.25, 1.25],
I random chunking into sequences for each instrument, and,
I random mixing of instruments from different songs.

• In order to prove the effectiveness of the data augmentation, we also trained
BLSTM-1 for the extraction of vocals without it

Instr. Network
SDR in dB (Raw outputs)

Dev Test [All] Test [New artists]

Vocals

BL 0.91 0.35 0.77

BLSTM-1 w/o data augm. 7.13 3.37 3.19

BLSTM-1 with data augm. 6.19 3.59 3.79

Accomp.

BL 6.57 6.82 6.49

BLSTM-1 w/o data augm. 13.33 9.71 9.53

BLSTM-1 with data augm. 12.23 9.93 9.64

Table 2: Effect of data augmentation for BLSTM-1

I Vocals and accompaniment gain through data augmentation
− on average 0.2 dB if we consider all Test songs
− on average 0.35 dB if we only consider the subset of Test songs where

there is not a song of the same artist in the Dev part

Blending of Networks

• Further improvement: Blending (+0.2 dB compared to BLSTM-3)

I Step 1: Linear combination of raw DNN outputs

ŝi,BLEND(n) = λŝi,FNN(n) + (1− λ)̂si,BLSTM(n)

I Step 2: multi-channel Wiener-filter post-processing

Blending weight λ
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Figure 3: Effect of blending (λ = 0: BLSTM-3, λ = 1: FNN-2)

• Our blending scheme is an extension of learned temporal fusion [4]

I Instead of linearly combining the systems after the MWF, we blend the
raw outputs of each DNN and perform afterwards a MWF post-processing

I Final MWF helps to reduce the interference and achieves better results
I Comparing the two schemes, we can observe that our fusion is on average

0.1 dB better for SDR and 0.3 dB for th SIR than the learned temporal
fusion scheme proposed in [4].
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Figure 4: SDR improvement in dB for different music genres
(Test part of DSD100)

Comparison to Other Approaches

• Comparison of our networks to other methods from literature (NMF, DNN)
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Figure 5: Comparison of different music source separation algorithms
(Test part of DSD100)

Approach
SDR in dB

Comments
Bass Drums Other Vocals Acco.
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BLEND (SWF) 2.76 3.93 3.37 5.13 11.53 λ = 0.25

sNMF [5,6] -0.84 1.12 1.82 2.17 8.58 Q = 25

dNMF [7] 0.91 1.87 2.43 2.56 8.88 Q = 25

DeepNMF [8] 1.88 2.11 2.64 2.75 8.90 Q = 25

M
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d
s

BLEND (MWF) 2.98 4.13 3.52 5.23 11.70 λ = 0.25

NUG [2] 2.72 3.89 3.18 4.55 10.29

Table 3: Comparison on Test part of DSD100

• Comparison of BLEND (MWF) to FNN-1

I We could gain 1.1 dB SDR since SiSEC 2015 competition

Separations of all methods that particpated in SiSEC MUS are available
http://sisec17.audiolabs-erlangen.de
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