Generalized tally-based decoders for traitor tracing and group testing

Boris Škorić and Wouter de Groot

Eindhoven University of Technology

TU/e

WIFS 2015
November 19

Outline

- Collusion attacks on watermarks
- Tardos codes
- Attack vs. defense: game theory
- Decoders
- Neyman-Pearson scores
- composite symbols
- Group testing

Forensic watermarking

Codewords

Collusion attacks

- Attackers compare their content
- Differences point to watermark
- Try to remove watermark

Collusion-resistant watermarking

Requirements

- Resistance against c_{0} attackers
- Low False Positive and False Negative error rate
- small watermark payload!

Attack model

- Discrete positions with embedded symbols
- Restricted digit model: Choice from available symbols only

Bias-based code [Tardos 2003, ŠKC 2007]

Alphabet Q of size q
Step 1:
For each position, generate bias vector $\mathbf{p}=\left(p_{\alpha}\right)_{a \in Q} . \quad|\mathbf{p}|=1 \quad \mathbf{p} \sim F$
Step 2:
For each position and user, draw watermark symbol: $\operatorname{Pr}[$ symbol $\alpha]=p_{\alpha}$.

								A	A								
								A									

pirated copy carries watermark y
Step 3:
Find attackers based on X and y

Asymptotically optimal scaling: code length $\propto \mathrm{c}_{0}{ }^{2}$

Separating the attackers from the innocents

Collusion channel (in Restricted Digit Model)

"Tally" vector m:

- \#colluders = c
- $\mathrm{m}_{\mathrm{a}}=\# \mathrm{a}$ received by colluders
- $|\mathbf{m}|=c$

Attack:

- Same strategy in each position (asymptotically strongest)
- Choose y as a function of \mathbf{m} : $\theta_{y \mid m}=\operatorname{Prob}[$ output y given \mathbf{m}]

Information theory approach

- Collusion attack is "malicious noise".
- Use techniques from channel coding!
- How much does Y reveal about \mathbf{M} ?
(\mathbf{M} is equivalent to colluder identities)
- Mutual information $\mathrm{I}(\mathbf{M} ; \mathrm{Y})$

Game theory:

- Pay-off function I(M;Y|P)
- Tracer chooses bias distribution $F(\mathbf{p})$

- Colluders choose strategy θ

Fingerprinting capacity

$$
C=\frac{1}{c} \max _{F} \min _{\theta} I(\boldsymbol{M} ; Y \mid \boldsymbol{P})
$$

Asymptotic saddlepoint

q-ary alphabet.
Pay-off function $I(\mathbf{M} ; Y \mid \mathbf{P})$.

With increasing c,

$$
F(\boldsymbol{p}) \propto \prod_{\alpha \in Q} p_{\alpha}^{-1 / 2}
$$

- optimal bias distribution gets closer to Jeffreys prior.
- optimal attack gets closer to Interleaving attack.

$$
\theta_{y \mid m}=\frac{m_{y}}{c} \quad \text { (pick random attacker) }
$$

[Boesten+Škorić 2011]

Decoding

- Capacity analysis says nothing about the decoder!
- How do you decide who is suspicious?

Idea: Neyman-Pearson hypothesis test.

- best $P_{F N}$ at given $P_{F P}$
- best $P_{F P}$ at given $P_{F N}$

Neyman-Pearson scores

Hypothesis H_{j} : "j is part of the coalition".
Neyman-Pearson score:

$$
S_{j}=\frac{\operatorname{Pr}\left[H_{j} \mid \text { evidence }\right]}{\operatorname{Pr}\left[\neg H_{j} \mid \text { evidence }\right]}
$$

If $S_{j}>$ threshold Z, then consider j to be guilty.
Assume colluder symmetry and position symmetry:
S_{j} equivalent to $\ln \frac{\mathbb{E}_{\bar{M} \mid x, j \in \mathcal{C}} \prod_{i \in[\ell]} \theta_{y_{i} \mid M_{i}}}{\mathbb{E}_{\bar{M} \mid x, j \notin \mathcal{C}} \prod_{i \in[\ell]} \theta_{y_{i} \mid M_{i}}}$

1. Score depends on (unknown) strategy θ.
2. Expectation E... means: sum over all possible coalitions of size \mathbf{c}.

Neyman-Pearson scores (2)

Problems:

1. Score depends on (unknown) strategy θ.
2. Expectation E...: sum over all possible coalitions of size \mathbf{c}.

Solutions:

1. Theorem by Abbe and Zheng (2010): $\boldsymbol{\theta}_{\text {saddlepoint }}$ gives Universal Decoder. - insert the Interleaving attack
2. "Forget" part of the evidence. "Remember" only x_{j} and

- biases p (Laarhoven 2014)
- symbol tallies (Škorić 2014)
- composite-symbol tallies. NEW!

Neyman-Pearson scores (3)

$$
\left.\begin{array}{c}
\text { Laarhoven score: } \\
\delta_{x y} \ln \left(1+\frac{1}{c-1} \cdot \frac{1}{p_{y}}\right) \tag{s=1}\\
\delta_{x y} \ln \left(1+\frac{1}{c-1} \cdot \frac{n-1}{t_{y}-1}\right) \\
\text { Škorić 2014: } \\
\text { Global tally } \mathrm{t}_{\mathrm{y}}=\text { \#users who received symbol } \mathrm{y}
\end{array}\right)
$$

\mathbf{p}	\mathbf{p}	\mathbf{p}	\mathbf{p}	p	\mathbf{p}

A	A	A	C	D	A
C	C	B	B	B	C
A	D	B	A	B	C
B	C	A	B	A	D
B	D	B	B	C	C
A	C	B	A	C	B
D	B	C	C	B	C

NEW IDEA:
Use more info by combining columns

simulation software: Wouter de Groot

How to combine score functions

Battery of score functions

- The bad decoders cause False Negative, not False Positive!
- The good decoders catch the colluders

Group testing

Real-life problem in epidemology:

- Blood samples from n people
- Expensive test => too few tests
- Long duration => tests in parallel
- Combine blood samples

Traitor Tracing	Group Testing
colluder	infected
symbol $0 / 1$	$1=$ included in test $0=$ not included
code length	number of tests
arbitrary attack θ	$\theta=$ All1 attack

Fixed "attack" \checkmark

The Neyman-Pearson approach to construct score functions is particularly well suited to Group Testing.

Summary

Composite symbol tally:

- Improved Traitor Tracing at "small" c
- Improved Group Testing

Still to be done:

- Further validation
- simulations, provable bounds, etc.
- $q>2$
- Group Testing numerics etc.
- Dynamic scenarios
- different conditions, different solutions?

- More realistic attack models
- Combined Digit Model, noisy medical tests, ...

$$
\begin{aligned}
& g_{2}(\xi, \lambda, \boldsymbol{t})=\ln \left[-1+\frac{n-2}{n-c}\right. \\
& \left.\frac{(c-1) t_{\lambda[1]}^{\{1\}} t_{\lambda[2]}^{\{2\}}+(n-c) t_{\lambda}}{(c-1)\left(t_{\lambda[1]}^{\{1\}}-\delta_{\xi[1] \lambda[1]}\right)\left(t_{\lambda[2]}^{\{2\}}-\delta_{\xi[2] \lambda[2]}\right)+(n-1-c)\left(t_{\lambda}-\delta_{\xi \lambda}\right)}\right]
\end{aligned}
$$

$$
\begin{align*}
& g_{3}(\xi, \lambda, \boldsymbol{t})=\ln \left[-1+\frac{n-3}{n-c} \cdot \frac{A_{3}}{B_{3}}\right], \text { with } \tag{18}\\
A_{3}= & c^{(3)} t_{\lambda[1]}^{\{1\}} t_{\lambda[2]}^{\{2\}} t_{\lambda[3]}^{\{3\}} \\
& +c^{(2)}(n-c)\left(t_{\lambda[12]}^{\{1,2\}} t_{\lambda[3]}^{\{3\}}+t_{\lambda[13]}^{\{1,3\}} t_{\lambda[2]}^{\{2\}}+t_{\lambda[23]}^{\{2,3\}} t_{\lambda[1]}^{\{1\}}\right) \\
& +c(n-c)(n-2 c) t_{\lambda} \tag{19}\\
B_{3}= & A_{3} \text { with } \boldsymbol{t} \rightarrow \boldsymbol{t}-\boldsymbol{e}_{\xi}, \quad n \rightarrow n-1 \tag{20}
\end{align*}
$$

