Generalized tally-based decoders for traitor tracing and group testing

Boris Škorić and Wouter de Groot

Eindhoven University of Technology

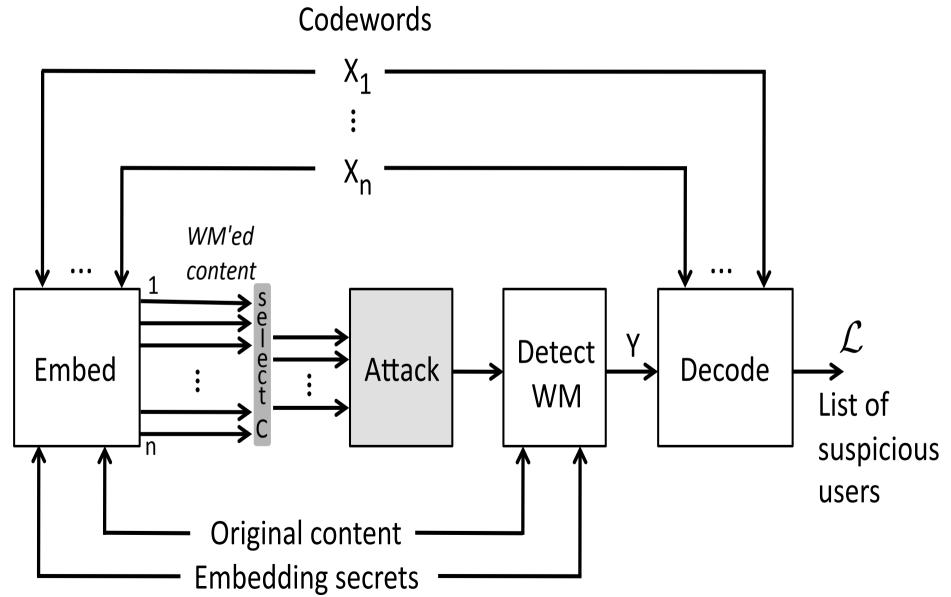
TU/e

WIFS 2015 November 19

Outline

- Collusion attacks on watermarks
- Tardos codes
- Attack vs. defense: game theory
- Decoders
 - Neyman-Pearson scores
 - composite symbols
- Group testing

Forensic watermarking



Collusion attacks

"Coalition of pirates"

- Attackers compare their content
- Differences point to watermark
- Try to remove watermark

Collusion-resistant watermarking

Requirements

- Resistance against c₀ attackers
- Low False Positive and False Negative error rate
- small watermark payload!

Attack model

- Discrete positions with embedded symbols
- **Restricted digit model**: Choice from available symbols only

Bias-based code [Tardos 2003, ŠKC 2007]

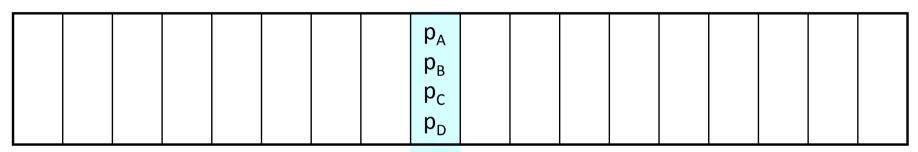
Alphabet Q of size q

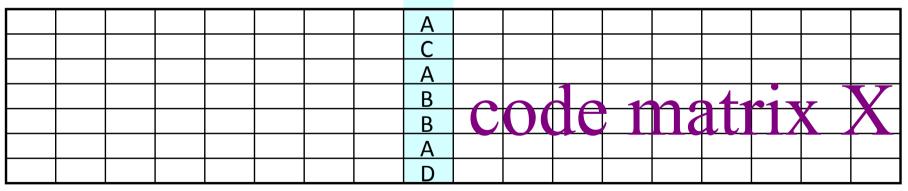
<u>Step 1</u>:

For each position, generate bias vector $\mathbf{p}=(p_{\alpha})_{\alpha\in Q}$. $|\mathbf{p}|=1$ $\mathbf{p} \sim F$

<u>Step 2</u>:

For each position and user, draw watermark symbol: $Pr[symbol \alpha] = p_{\alpha}$.

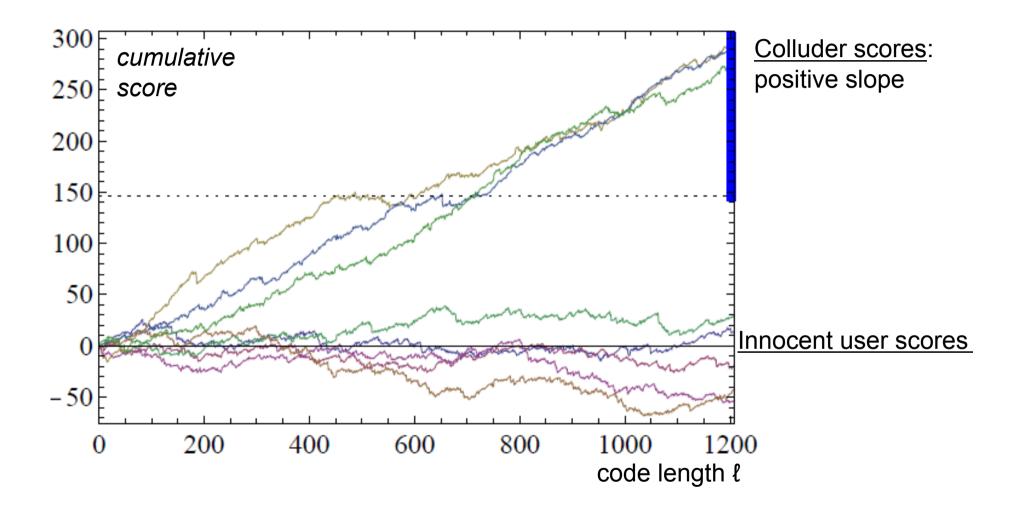




pirated copy carries watermark y

<u>Step 3</u>: Find attackers based on X and y Asymptotically optimal scaling: code length ∞c_0^2

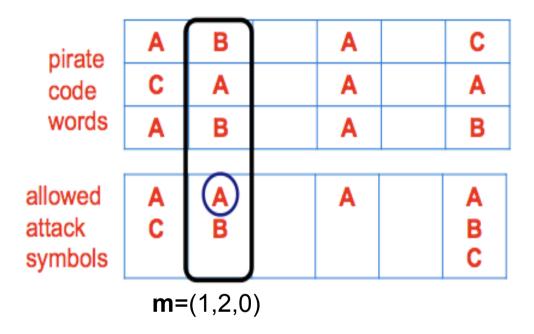
Separating the attackers from the innocents



Collusion channel (in Restricted Digit Model)

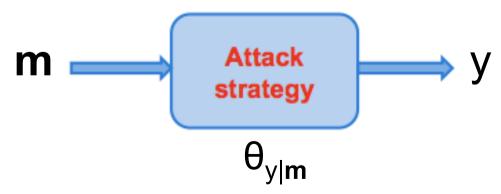
"Tally" vector **m**:

- #colluders = c
- m_{α} = # α received by colluders
- |**m**|=c



Attack:

- Same strategy in each position (asymptotically strongest)
- Choose y as a function of m: θ_{y|m} = Prob[output y given m]



Information theory approach

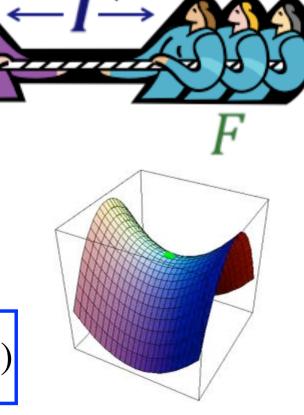
- Collusion attack is "malicious noise".
- Use techniques from channel coding!
 - How much does Y reveal about M?
 (M is equivalent to colluder identities)
 - Mutual information I(M;Y)

Game theory:

- Pay-off function I(M;Y|P)
- Tracer chooses bias distribution F(p)
- Colluders choose strategy θ

Fingerprinting capacity

$$C = \frac{1}{c} \max_{F} \min_{\theta} I(\boldsymbol{M}; Y \mid \boldsymbol{P})$$



[Moulin 2008]

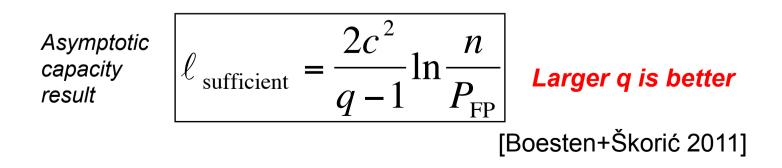
Asymptotic saddlepoint

q-ary alphabet. Pay-off function I(**M**;Y|**P**).

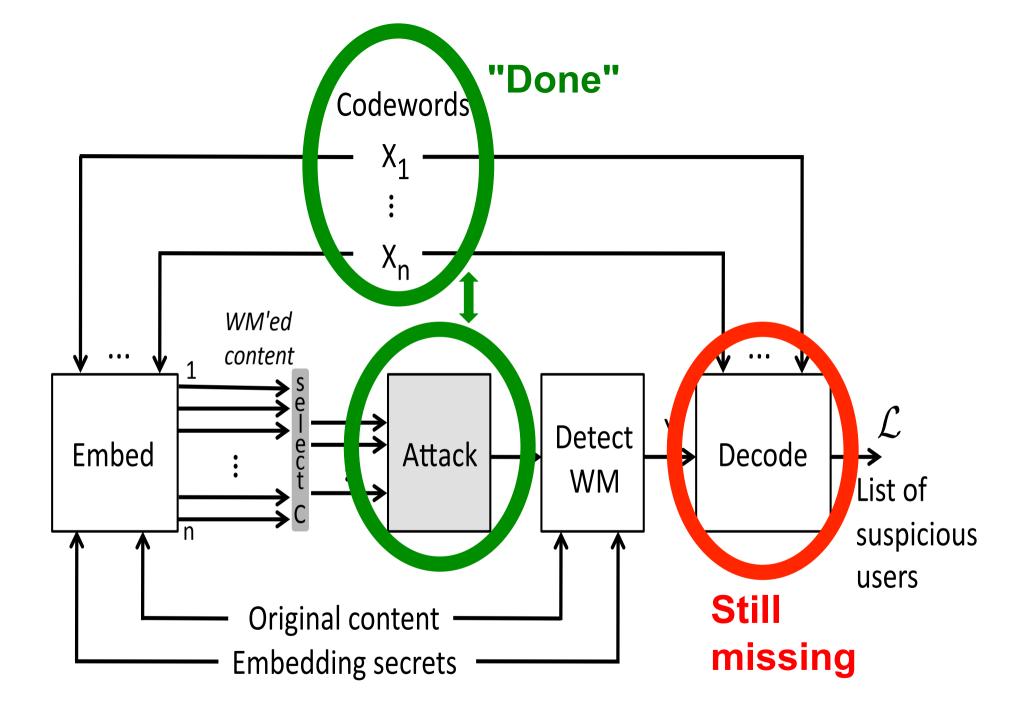
With increasing c,

- $F(\boldsymbol{p}) \propto \prod_{\alpha \in Q} p_{\alpha}^{-1/2}$
- optimal bias distribution gets closer to Jeffreys prior.
- optimal attack gets closer to Interleaving attack.

$$m = \frac{m_y}{C}$$
 (pick random attacker)

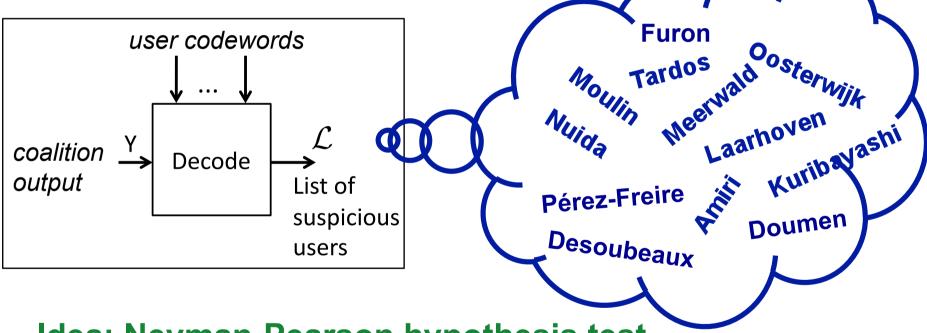


 $\theta_{y|}$



Decoding

- Capacity analysis says nothing about the decoder!
- How do you decide who is suspicious?



- Idea: Neyman-Pearson hypothesis test.
- best P_{FN} at given P_{FP}
- -best P_{FP} at given P_{FN}

Neyman-Pearson scores

Hypothesis H_i: "j is part of the coalition".

Neyman-Pearson score:

$$S_{j} = \frac{\Pr[H_{j} | \text{evidence}]}{\Pr[\neg H_{j} | \text{evidence}]}$$

If S_i > threshold Z, then consider j to be guilty.

Assume colluder symmetry and position symmetry:

$$S_{j} \text{ equivalent to} \quad \ln \frac{\mathbb{E}_{\bar{\boldsymbol{M}}|x,j\in\mathcal{C}} \prod_{i\in[\ell]} \theta_{y_{i}|\boldsymbol{M}_{i}}}{\mathbb{E}_{\bar{\boldsymbol{M}}|x,j\notin\mathcal{C}} \prod_{i\in[\ell]} \theta_{y_{i}|\boldsymbol{M}_{i}}}$$

- 1. Score depends on (unknown) strategy θ .
- 2. Expectation E... means: sum over all possible coalitions of size c.

Neyman-Pearson scores (2)

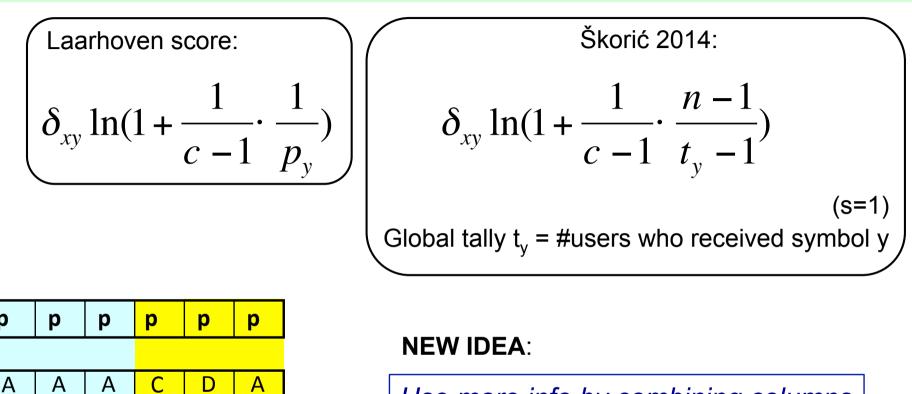
Problems:

- 1. Score depends on (unknown) strategy θ .
- 2. Expectation E...: sum over all possible coalitions of size c.

Solutions:

- 1. Theorem by Abbe and Zheng (2010): $\theta_{saddlepoint}$ gives Universal Decoder.
 - insert the Interleaving attack
- 2. "Forget" part of the evidence. "Remember" only x_i and
 - biases **p** (Laarhoven 2014)
 - symbol tallies (Škorić 2014)
 - composite-symbol tallies. **NEW!**

Neyman-Pearson scores (3)



Use more info by combining columns

composite symbols "DBC", "CBC"

s columns combined

С

D

С

D

С

В

В

В

A

В

В

С

С

D

С

В

(

В

В

Α

С

С

B

В

A

B

B

A

р

С

A

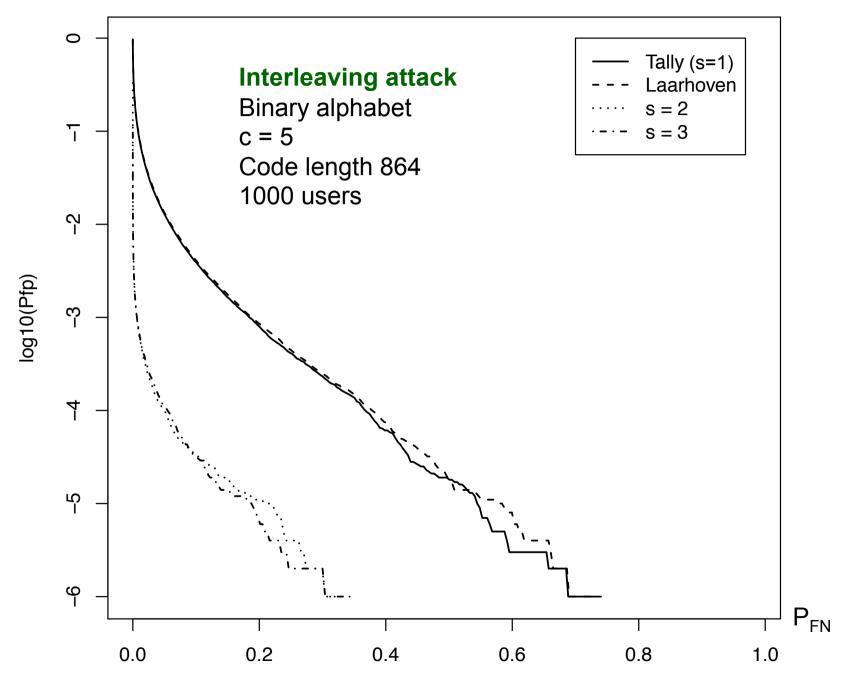
В

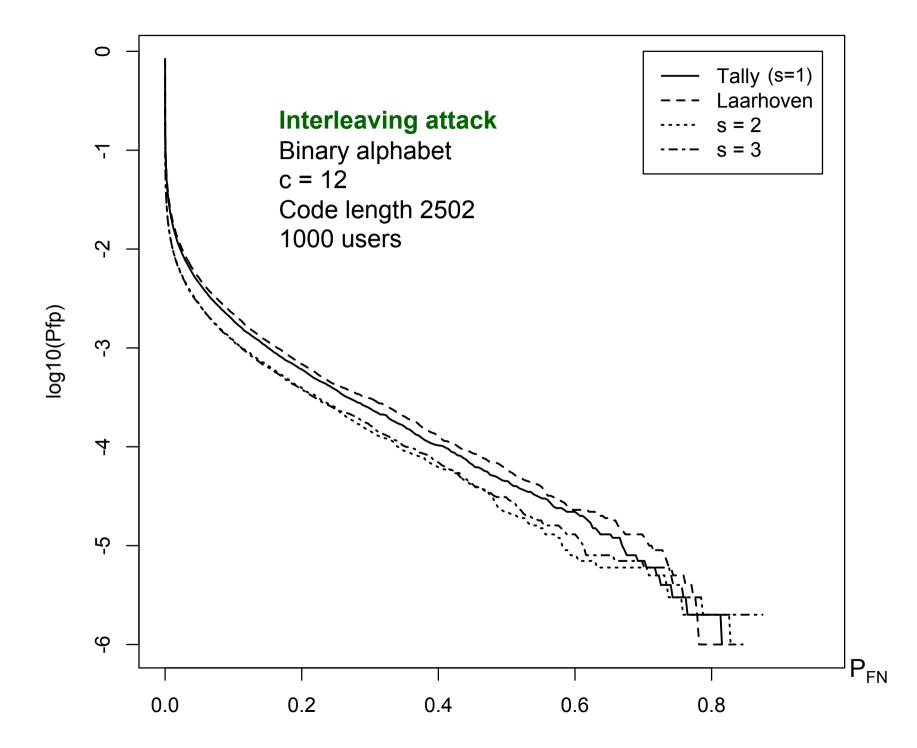
В

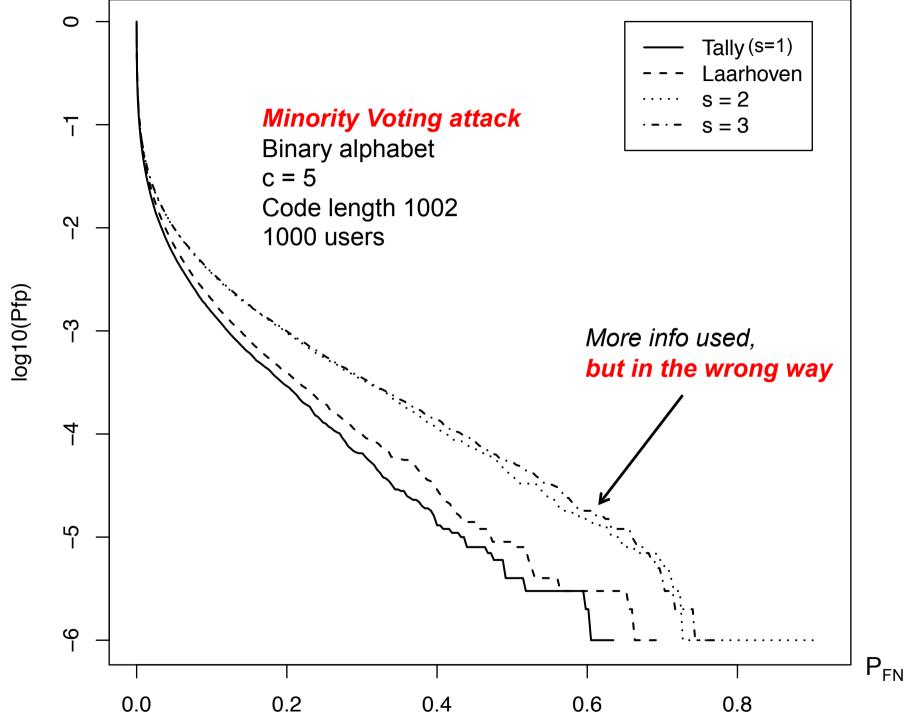
Α

D

simulation software: Wouter de Groot







How to combine score functions

Battery of score functions

- The bad decoders cause False Negative, **not False Positive**!
- The good decoders catch the colluders

Group testing

Real-life problem in epidemology:

- Blood samples from n people
- Expensive test => too few tests
- Long duration => tests in parallel
- Combine blood samples

Traitor Tracing	Group Testing
colluder	infected
symbol 0/1	1 = included in test 0 = not included
code length	number of tests
arbitrary attack θ	θ = All1 attack

Fixed "attack" The Neyman-Pearson approach to construct score functions is particularly well suited to Group Testing.

Summary

Composite symbol tally:

- Improved Traitor Tracing at "small" c
- Improved Group Testing

Still to be done:

- Further validation
 - simulations, provable bounds, etc.
 - q>2
 - Group Testing numerics etc.
- Dynamic scenarios
 - different conditions, different solutions?
- More realistic attack models
 - Combined Digit Model, noisy medical tests, ...

$$g_{2}(\xi,\lambda,t) = \ln\left[-1 + \frac{n-2}{n-c} \cdot (16) + \frac{(c-1)t_{\lambda[1]}^{\{1\}}t_{\lambda[2]}^{\{2\}}}{(c-1)(t_{\lambda[1]}^{\{1\}} - \delta_{\xi[1]\lambda[1]})(t_{\lambda[2]}^{\{2\}} - \delta_{\xi[2]\lambda[2]}) + (n-1-c)(t_{\lambda} - \delta_{\xi\lambda})}\right].$$

$$g_3(\xi, \lambda, t) = \ln[-1 + \frac{n-3}{n-c} \cdot \frac{A_3}{B_3}], \text{ with}$$
 (18)

$$A_{3} = c^{(3)} t_{\lambda[1]}^{\{1\}} t_{\lambda[2]}^{\{2\}} t_{\lambda[3]}^{\{3\}} + c^{(2)} (n-c) (t_{\lambda[12]}^{\{1,2\}} t_{\lambda[3]}^{\{3\}} + t_{\lambda[13]}^{\{1,3\}} t_{\lambda[2]}^{\{2\}} + t_{\lambda[23]}^{\{2,3\}} t_{\lambda[1]}^{\{1\}}) + c(n-c) (n-2c) t_{\lambda}$$
(19)

 $B_3 = A_3 \text{ with } \boldsymbol{t} \to \boldsymbol{t} - \boldsymbol{e}_{\xi}, \quad n \to n-1$ (20)