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• Collusion attacks on watermarks 

• Tardos codes 

• Attack vs. defense: game theory 

• Decoders 

- Neyman-Pearson scores 

- composite symbols 

• Group testing 

Outline 
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Figure 7.1 @Caption.

Likewise, the concept of a symbol has no meaning other than being a label for
the different marks. The number of different marks is the same in each position. In
this abstract description, the problem of collusion-resistant fingerprinting becomes
a coding problem: how to design a fingerprinting code that will resist coalitions up
to a certain size.

Fig. 7.1 shows the flow of information in this setting. The content contains `
positions, into each of which a symbol from the finite alphabet X can be embedded.
We write |X | = q. There are n users. The coalition is a subset C ⇢ [n] of size
|C| = c. We refer to the party that tries to identify the colluders as the tracer. The
tracer creates codewords X1, . . . , Xn 2 X `. The watermarked content for user j
is created by embedding Xj into the original content, using secret information,
the “embedding secrets”. Each user receives a uniquely watermarked copy of the
content. The colluders combine their copies and create the “attacked content”. The
attack strategy is now known to the tracer. The tracer uses a watermark detector
to see which symbols are present in all the positions. This results in a sequence
Y 2 Y`, where the space Y is not necessarily equal to the alphabet X . For instance,
erasures could occur, or multiple symbols may be detected in one position. An
erasure is denoted as a special symbol ‘✏’. The sequence Y is called the attacked
watermark. The detector is a so-called ‘informed’ detector: it has access to the
unwatermarked content. Finally the tracer runs a decoder algorithm which looks

3	  

Forensic	  watermarking	  
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• AKackers	  compare	  their	  content	  

• Differences	  point	  to	  watermark	  

• Try	  to	  remove	  watermark	  

"CoaliRon	  of	  pirates"	  

Collusion	  a<acks	  
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Collusion-‐resistant	  watermarking	  

Requirements	  

• Resistance	  against	  c0	  aKackers	  
• Low	  False	  PosiRve	  and	  False	  NegaRve	  error	  rate	  
• small	  watermark	  payload!	  

AKack	  model	  

• Discrete	  posiRons	  with	  embedded	  symbols	  

• Restricted	  digit	  model:	  Choice	  from	  available	  symbols	  only	  
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Bias-‐based	  code	  [Tardos	  2003,	  ŠKC	  2007]	  

code matrix X 

pA	  
pB	  
pC	  
pD	  

A	  

A	  
B	  

A	  
D	  

C	  

B	  

Alphabet Q of size q 
Step 1:  
For each position, generate bias vector p=(pα)α∊Q.   |p|=1    p ∼ F 

Step 2:  
For each position and user, draw watermark symbol:  Pr[symbol α] = pα. 

pirated copy carries watermark y 
Step 3:  
Find attackers based on X and y 

Asymptotically optimal scaling: 
code length ∝c0

2 



code length ℓ 

Separa6ng	  the	  a<ackers	  from	  the	  innocents	  

Innocent user scores 

Colluder scores: 
positive slope 

cumulative 
score 
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Collusion	  channel	  (in	  Restricted	  Digit	  Model)	  

"Tally" vector m: 
• #colluders = c 
• mα= #α received by colluders 
• |m|=c 

m=(1,2,0) 

Attack: 
• Same strategy in each position 

(asymptotically strongest) 

• Choose y as a function of m: 
θy|m = Prob[output y given m] 

y m 

θy|m 
8	  



Informa6on	  theory	  approach	  

• Collusion attack is "malicious noise". 
• Use techniques from channel coding! 

- How much does Y reveal about M? 
(M is equivalent to colluder identities) 

- Mutual information I(M;Y) 

Game theory: 

•  Pay-off function I(M;Y|P) 

•  Tracer chooses bias distribution F(p) 

•  Colluders choose strategy θ 

Fingerprinting 
capacity 

€ 

C =
1
c
max
F
min
θ
I(M;Y | P)

saddle point 9	  

[Moulin 2008] 



Asympto6c	  saddlepoint	  

q-ary alphabet. 
Pay-off function I(M;Y|P). 

€ 

θy|m =
my

c
(pick random attacker) 
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With increasing c, 

• optimal bias distribution gets closer to Jeffreys prior. 
• optimal attack gets closer to Interleaving attack. 

€ 

F(p)∝ pα
−1/ 2

α∈Q
∏

  

€ 

ℓ sufficient =
2c 2

q −1
ln n
PFP

[Huang+Moulin	  2012]	  

Asymptotic 
capacity 
result 

Larger q is better 

[Boesten+Škorić 2011] 
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Figure 7.1 @Caption.

Likewise, the concept of a symbol has no meaning other than being a label for
the different marks. The number of different marks is the same in each position. In
this abstract description, the problem of collusion-resistant fingerprinting becomes
a coding problem: how to design a fingerprinting code that will resist coalitions up
to a certain size.

Fig. 7.1 shows the flow of information in this setting. The content contains `
positions, into each of which a symbol from the finite alphabet X can be embedded.
We write |X | = q. There are n users. The coalition is a subset C ⇢ [n] of size
|C| = c. We refer to the party that tries to identify the colluders as the tracer. The
tracer creates codewords X1, . . . , Xn 2 X `. The watermarked content for user j
is created by embedding Xj into the original content, using secret information,
the “embedding secrets”. Each user receives a uniquely watermarked copy of the
content. The colluders combine their copies and create the “attacked content”. The
attack strategy is now known to the tracer. The tracer uses a watermark detector
to see which symbols are present in all the positions. This results in a sequence
Y 2 Y`, where the space Y is not necessarily equal to the alphabet X . For instance,
erasures could occur, or multiple symbols may be detected in one position. An
erasure is denoted as a special symbol ‘✏’. The sequence Y is called the attacked
watermark. The detector is a so-called ‘informed’ detector: it has access to the
unwatermarked content. Finally the tracer runs a decoder algorithm which looks

Still 
missing 

"Done" 
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Decoding	  
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Figure 7.1 @Caption.

Likewise, the concept of a symbol has no meaning other than being a label for
the different marks. The number of different marks is the same in each position. In
this abstract description, the problem of collusion-resistant fingerprinting becomes
a coding problem: how to design a fingerprinting code that will resist coalitions up
to a certain size.

Fig. 7.1 shows the flow of information in this setting. The content contains `
positions, into each of which a symbol from the finite alphabet X can be embedded.
We write |X | = q. There are n users. The coalition is a subset C ⇢ [n] of size
|C| = c. We refer to the party that tries to identify the colluders as the tracer. The
tracer creates codewords X1, . . . , Xn 2 X `. The watermarked content for user j
is created by embedding Xj into the original content, using secret information,
the “embedding secrets”. Each user receives a uniquely watermarked copy of the
content. The colluders combine their copies and create the “attacked content”. The
attack strategy is now known to the tracer. The tracer uses a watermark detector
to see which symbols are present in all the positions. This results in a sequence
Y 2 Y`, where the space Y is not necessarily equal to the alphabet X . For instance,
erasures could occur, or multiple symbols may be detected in one position. An
erasure is denoted as a special symbol ‘✏’. The sequence Y is called the attacked
watermark. The detector is a so-called ‘informed’ detector: it has access to the
unwatermarked content. Finally the tracer runs a decoder algorithm which looks

user codewords 

coalition 
output 

•  Capacity analysis says nothing about the decoder! 
•  How do you decide who is suspicious? 

Idea: Neyman-Pearson hypothesis test. 

- best PFN at given PFP 

- best PFP at given PFN 
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Pérez-Freire 

Desoubeaux 
Doumen 



Neyman-‐Pearson	  scores	  

Hypothesis Hj :  "j is part of the coalition". 

Neyman-Pearson score: 

If Sj > threshold Z, then consider j to be guilty. 

€ 

S j =
Pr[ H j | evidence]
Pr[¬H j | evidence]

Assume colluder symmetry and position symmetry: 

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

Let ⇠ 2 Qs and J ✓ [s]. Then ⇠[J ] 2 Q|J| denotes a length-
|J | sub-sequence of ⇠ obtained by selecting the components
of ⇠ indicated by J . For ⇣ 2 Q|J| we define t

J

a⇣

as the number
of users whose J-part of ⇠

ja

equals ⇣. We define a vector e
⇠

of length q

s as (e
⇠

)
↵

= �

⇠↵

.

B. Derivation of the score function for arbitrary s

In [25] it was found that the Neyman-Pearson score for the
hypothesis j 2 C vs. j /2 C can be expressed as

ln
EM̄ |x,j2C✓ȳ|M̄

EM̄ |x,j /2C✓ȳ|M̄
= ln

EM̄ |x,j2C
Q

i2[`] ✓yi|Mi

EM̄ |x,j /2C
Q

i2[`] ✓yi|Mi

. (8)

Evaluating the expectations over M̄ for given x involves
computing a sum over all possible candidate coalitions, i.e. all
size-c subsets of [n]. When n is of order 105 or larger, this is
infeasible already for moderate c. In order to get an expression
that can be handled more easily, some of the information
in x has to be ‘forgotten’. In [25] the solution was to discard
everything except the codeword x̄

j

and the tallies t̄. This leads
to a complete factorization into single-position scores.
Furthermore, in [25] the Interleaving strategy ✓

yi|mi
= m

iyi/c

was substituted, resulting in (2). For c ! 1 the Interleaving
attack lies in the mutual information maxmin game saddlepoint
[], and for finite c it lies very close to the saddlepoint;
substitution of the saddlepoint-✓ into the Neyman-Pearson
score results in a universal score function, i.e. a score that not
only performs optimally against the saddlepoint-value of the
attack but also performs well against all other attacks. Hence,
substituting the Interleaving attack into (8) yields an almost
universal score function.
We now follow the same approach with respect to ✓, but we
discard less information from x. We ‘remember’ x̄

j

and the
composite-symbol tallies t

a⇣

for a 2 [`/s], ⇣ 2 Qs. This
results in a score that is a sum of s-sequence sub-scores.
Theorem 1: Let ` = s. Let ⇠ 2 Qs be shorthand notation for
the codeword x̄

j

of the user under scrutiny. Then the Neyman-
Pearson score (8) for user j is equivalent to

w(⇠,�, t)
def
= ln(

�
n

c

�
EM |t✓�|M�

n�1
c

�
EM |t�e⇠

✓

�|M
� 1) (9)

where M and t are defined over Qs.
The proof is given in Appendix A.
Eq. (9) can be rewritten in many different ways. The presented
form has the advantage that, once an analytic expression has
(laboriously) been found for the numerator, a formula for the
denominator can simply be obtained by replacing t ! t�e

⇠

.
Note that the fraction

�
n

c

�
/

�
n�1
c

�
in (9) simplifies to n/(n�c).

We now consider ` = Ls, with L > 1, as explained in
Section IV-A, and look again at the general score expres-
sion (8). On the one hand we will keep track of the composite
symbols tallies within each bunch of s columns, but on the
other hand we ‘forget’, except for user j, how these composite
symbols are organised into codewords. (For example, q = 2,
s = 3, ` = 9 and a user 6= j has codeword 000111001. We
take into account that there is a contribution to t1,000 from
the first bunch of s symbols, a contribution to t2,111 from the

second bunch and to t3,001 from the third. However, we will
forget who contributed what to the tallies, and thus we do not
remember that the 000, 111 and 001 are connected to each
other.) According to Theorem 1 this leads to the following
score system,

r

j

=
LX

a=1

w(⇠
ja

,�

a

, t
a

). (10)

where r

j

is the score of user j, and the function w is defined
in (9). Our next task is to compute the expectation EM |t✓�|M
for one bunch of columns.
Lemma 1: Let the attack strategy be Interleaving. Then

EM |t✓
Int
�|M = c

�s

X

z1,...,zs2Qs

(
sY

i=1

�

zi[i],�[i])EM |t

sY

i=1

M

zi . (11)

Proof: The colluders apply the Interleaving strategy indepen-
dently in each position, which yields ✓

�|m =
Q

s

i=1(m
{i}
�[i]/c).

Furthermore, the sub-component tally m

{i}
↵

, for ↵ 2 Q, can
be expressed as

m

{i}
↵

=
X

z2Qs

m

z

�

z[i],↵. (12)

We use (12) s times, i.e. for i = 1 . . . s , substituting ↵ = �[i].

The expectation EM |t
Q

s

i=1 Mzi in (11) can be computed
using (4). This leads to rather complicated expressions, es-
pecially for large s, since (11) contains powers of tallies M

zi ,
whereas (4) works with falling factorials.
The powers that occur in the product

Q
s

i=1 Mzi depend on the
structure of the ‘collisions’ between z1, . . . , zs, i.e. whether
some of the z

i

symbols are equal to each other and if so,
which ones. This information can be captured in the notion of
partitions. A partition of the set [s] into k parts is defined as
a set ⇣ = {⇣1, . . . , ⇣k} with ⇣

a

✓ [s], ⇣
a

6= ;, ⇣
a

\ ⇣

b

= ; for
a 6= b and

S
a

⇣

a

= [s]. We denote the space of partitions of
[s] as P[s].
Theorem 2: It holds that

EM |t✓
Int
�|M =

1

c

s

n

(s)

X

⇣2P[s]

⇤
nc

(⇣)

|⇣|Y

a=1

t

⇣a

�[⇣a]
(13)

where the ⇤
nc

(⇣) are expressions that depend only on n, c
and ⇣.
A proof sketch is given in Appendix B.
Corollary 1: The Neyman-Pearson score against the Interleav-
ing attack is given by

g

s

(⇠,�, t)
def
= (14)

ln[
n� s

n� c

·
P

⇣2P[s]
⇤
nc

(⇣)
Q|⇣|

a=1 t
⇣a

�[⇣a]P
⇣2P[s]

⇤
n�1,c(⇣)

Q|⇣|
a=1(t

⇣a

�[⇣a]
��

⇠[⇣a]�[⇣a])
�1].

Proof: Follows from substituting (13) into (9).
In general the parameters ⇤

nc

(⇣) are complicated, especially
for large s. For s = 2, s = 3 and s = 4 we will give
explicit results in the coming sections. The ⇤ parameter for
the ‘easiest’ partition is given below for general s.
Lemma 2: Let ⇣ = {{1}, {2}, . . . , {s}}. Then ⇤

nc

(⇣) = c

(s).

Sj equivalent to 

1.  Score depends on (unknown) strategy θ. 

2.  Expectation E⋯ means: sum over all possible coalitions of size c.  

13	  



Neyman-‐Pearson	  scores	  (2)	  

1.  Score depends on (unknown) strategy θ. 

2.  Expectation E⋯: sum over all possible coalitions of size c.  

Problems: 

Solutions: 
1.  Theorem by Abbe and Zheng (2010): θsaddlepoint gives Universal Decoder. 

- insert the Interleaving attack 

2.  "Forget" part of the evidence. "Remember" only xj and 

•  biases p (Laarhoven 2014) 

•  symbol tallies (Škorić 2014) 

•  composite-symbol tallies. NEW! 

14	  
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A	  
C	  

B	  

B	  

p	  

A	  

C	  
D	  

B	  
C	  

C	  

C	  

p	  

D	  

B	  
A	  

C	  
B	  

B	  

C	  

s columns 
combined 

Neyman-‐Pearson	  scores	  (3)	  

composite symbols "DBC", "CBC" 

Global tally ty = #users who received symbol y 

Laarhoven score: Škorić 2014: 

€ 

δxy ln(1+
1

c −1
⋅
1
py
)

€ 

δxy ln(1+
1

c −1
⋅
n −1
ty −1

)

(s=1) 

Use more info by combining columns 
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NEW IDEA: 
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simulation software: Wouter de Groot 
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PFN 

Interleaving attack 
Binary alphabet 
c = 5 
Code length 864 
1000 users 

(s=1) 
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Interleaving attack 
Binary alphabet 
c = 12 
Code length 2502 
1000 users 

PFN 

17	  



0.0 0.2 0.4 0.6 0.8

−6
−5

−4
−3

−2
−1

0

minority voting

fn

lo
g1

0(
Pf

p)

Tally
Laarhoven
s = 2
s = 3

PFN 

Minority Voting attack 
Binary alphabet 
c = 5 
Code length 1002 
1000 users 

(s=1) 
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More info used, 
but in the wrong way 



How	  to	  combine	  score	  func6ons	  

Battery of score functions 

•  The bad decoders cause False Negative, not False Positive!  

•  The good decoders catch the colluders 

19	  



Group	  tes6ng	  

Real-life problem in epidemology: 
• Blood samples from n people 
• Expensive test => too few tests 
• Long duration => tests in parallel 
• Combine blood samples 

Traitor	  Tracing	   Group	  Tes0ng	  

colluder	   infected	  

symbol	  0/1	   1	  =	  included	  in	  test	  
0	  =	  not	  included	  

code	  length	   number	  of	  tests	  

arbitrary	  aKack	  θ	   θ	  =	  All1	  aKack	  

Fixed "attack" 

The Neyman-Pearson approach to construct score functions 
is particularly well suited to Group Testing. 

20	  



Summary	  

Composite symbol tally: 

• Improved Traitor Tracing at "small" c 

• Improved Group Testing 

Still to be done: 

•  Further validation 

-  simulations, provable bounds, etc. 

-  q>2 

-  Group Testing numerics etc. 

•  Dynamic scenarios 

-  different conditions, different solutions? 

•  More realistic attack models 

-  Combined Digit Model, noisy medical tests, ... 

21	  
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Proof: We consider (11) and use (4). For all terms in the
z1, . . . , zs summation, the expectation EM |t

Q
i

M

zi con-
tains exactly one term that contains s powers of t, namely
c

(s)

n

(s) tz1 · · · tzs . All the other terms contain fewer powers of t.
Finally, performing the summations

P
zi

with the constraint
�

zi[i],�[i] yields factors t

{i}
�[i].

Note that for s = 1 the g

s

is equivalent to the known single-
position score function h.

g1(⇠,�, t) = ln(
n� 1

n� c

· t

y

t

y

� �

xy

� 1)

= ln
c� 1

n� c

+ ln(1 +
n� 1

c� 1
· �

xy

t

y

� �

xy

)

= ln
c� 1

n� c

+ h(x, y, t). (15)

The constant shift ln c�1
n�c

does not depend on x, y, t and
therefore does not affect the score system.

C. Computational effort for computing the scores
How much computational effort is involved in computing
the user scores g? First of all, the tally t

J

�[J] has to be
computed for each subset J ✓ [s]. There are 2s � 1 of
these subsets. Each tally can be computed with practically
the same amount of effort. Start with the s n-component
vectors (�

⇠j [1]�[1])j2[n] · · · (�
⇠j [s]�[s])j2[n] and compute the

t

{i}
�[i] from them by summing over the users. Then create the�
s

2

�
vectors (�

⇠j [ik]�[ik])j2[n] by componentwise multiplication
of the vectors (�

⇠j [i]�[i])j2[n] and (�
⇠j [k]�[k])j2[n]. Store these

vectors. Compute the t

{i,k}
�[ik] from them by summing over j,

etc. Given code length `, the total effort of computing all these
tallies scales as 2sn`/s.
Next the sum over all partitions ⇣ 2 P[s] has to be taken.
The number of partitions is given by the Bell number B

s

. For
large s one can approximate B

s

⇡ ( s

e ln s

)s [6]. The number of
multiplications needed in the summation terms is proportional
to s. Finally, the number of composite-symbol scores that has
to be computed is n`/s.
In conclusion, for large s the total effort involved in the
computation of all users scores scales as n`( s

ln s

)s, and the
main effort lies in multiplying the tallies in each term of the
⇣-summation.

V. SCORES FOR SMALL s

A. Score for s = 2

Theorem 3: For s = 2 the Neyman-Pearson score (9) in the
case of the Interleaving attack is given by

g2(⇠,�, t) = ln[�1 +
n� 2

n� c

· (16)

(c� 1)t{1}
�[1]t

{2}
�[2] + (n� c)t

�

(c�1)(t{1}
�[1]��

⇠[1]�[1])(t
{2}
�[2]��

⇠[2]�[2])+(n�1�c)(t
�

� �

⇠�

)
].

Proof: The expectation EM |tMz1Mz2 follows from (6). Sub-
stitution into (11) gives c

2EM |t✓
Int
�|M = c

(2)

n

(2) t
{1}
�[1]t

{2}
�[2] +

c(n�c)
n

(2) t

�

. Substitution of this expression, and of its shifted
version with (t ! t� e

⇠

, n ! n� 1), into (9) yields (16).

B. Score for s = 3

Lemma 3: Let ↵,�, � be symbols in some alphabet. Let m
and t be the colluder tally and all-user tally respectively for
this alphabet. Then

EM |tM↵

M

�

M

�

=
c

(3)

n

(3)
t

↵

t

�

t

�

+
c

(2)(n� c)

n

(3)
t

↵

(�
↵�

t

�

+ �

↵�

t

�

+ �

��

t

�

)

+
c(n� c)(n� 2c)

n
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Proof: Follows from (4) after some diligent work.
Theorem 4: For s = 3 the Neyman-Pearson score (9) in the
case of the Interleaving attack is given by

g3(⇠,�, t) = ln[�1 +
n� 3

n� c

· A3

B3
], with (18)

A3 = c
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B3 = A3 with t ! t� e

⇠

, n ! n� 1 (20)

Proof: Follows the same steps as the proof of Theorem 3, but
now starting from Lemma 3.

C. Score for s = 4

Lemma 4: Let ↵,�, �, " be symbols in some alphabet. Let m
and t be the colluder tally and all-user tally respectively for
this alphabet. Then
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Proof: Follows from (4) after diligent labour.
Theorem 5: For s = 4 the Neyman-Pearson score (9) in the
case of the Interleaving attack has the form (14), with

⇤
nc

({{1}, {2}, {3}, {4}}) = c

(4)

⇤
nc

({{12}, {3}, {4}}) = c

(3)(n� c)

⇤
nc

({{12}, {34}}) = c

(2)(n� c)(2)

⇤
nc

({{123}, {4}}) = c

(2)(n� c)(n� 2c+ 1)

⇤
nc

({{1234}}) = c(n� c)[(n� 2c)(n� 3c) + (n� c)]. (22)

The other ⇤-parameters are obtained by permuting the set [s].
Proof: Follows the same steps as the proof of Theorem 3, but
now starting from Lemma 4.
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Proof: We consider (11) and use (4). For all terms in the
z1, . . . , zs summation, the expectation EM |t

Q
i

M

zi con-
tains exactly one term that contains s powers of t, namely
c

(s)

n

(s) tz1 · · · tzs . All the other terms contain fewer powers of t.
Finally, performing the summations

P
zi

with the constraint
�

zi[i],�[i] yields factors t

{i}
�[i].

Note that for s = 1 the g

s

is equivalent to the known single-
position score function h.

g1(⇠,�, t) = ln(
n� 1

n� c

· t

y

t

y

� �

xy

� 1)

= ln
c� 1

n� c

+ ln(1 +
n� 1

c� 1
· �

xy

t

y

� �

xy

)

= ln
c� 1

n� c

+ h(x, y, t). (15)

The constant shift ln c�1
n�c

does not depend on x, y, t and
therefore does not affect the score system.

C. Computational effort for computing the scores
How much computational effort is involved in computing
the user scores g? First of all, the tally t

J

�[J] has to be
computed for each subset J ✓ [s]. There are 2s � 1 of
these subsets. Each tally can be computed with practically
the same amount of effort. Start with the s n-component
vectors (�

⇠j [1]�[1])j2[n] · · · (�
⇠j [s]�[s])j2[n] and compute the

t

{i}
�[i] from them by summing over the users. Then create the�
s

2

�
vectors (�

⇠j [ik]�[ik])j2[n] by componentwise multiplication
of the vectors (�

⇠j [i]�[i])j2[n] and (�
⇠j [k]�[k])j2[n]. Store these

vectors. Compute the t

{i,k}
�[ik] from them by summing over j,

etc. Given code length `, the total effort of computing all these
tallies scales as 2sn`/s.
Next the sum over all partitions ⇣ 2 P[s] has to be taken.
The number of partitions is given by the Bell number B

s

. For
large s one can approximate B

s

⇡ ( s

e ln s

)s [6]. The number of
multiplications needed in the summation terms is proportional
to s. Finally, the number of composite-symbol scores that has
to be computed is n`/s.
In conclusion, for large s the total effort involved in the
computation of all users scores scales as n`( s

ln s

)s, and the
main effort lies in multiplying the tallies in each term of the
⇣-summation.

V. SCORES FOR SMALL s

A. Score for s = 2

Theorem 3: For s = 2 the Neyman-Pearson score (9) in the
case of the Interleaving attack is given by

g2(⇠,�, t) = ln[�1 +
n� 2

n� c

· (16)

(c� 1)t{1}
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� �

⇠�

)
].

Proof: The expectation EM |tMz1Mz2 follows from (6). Sub-
stitution into (11) gives c

2EM |t✓
Int
�|M = c

(2)

n

(2) t
{1}
�[1]t

{2}
�[2] +

c(n�c)
n

(2) t

�

. Substitution of this expression, and of its shifted
version with (t ! t� e

⇠

, n ! n� 1), into (9) yields (16).

B. Score for s = 3

Lemma 3: Let ↵,�, � be symbols in some alphabet. Let m
and t be the colluder tally and all-user tally respectively for
this alphabet. Then

EM |tM↵
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. (17)

Proof: Follows from (4) after some diligent work.
Theorem 4: For s = 3 the Neyman-Pearson score (9) in the
case of the Interleaving attack is given by

g3(⇠,�, t) = ln[�1 +
n� 3

n� c

· A3

B3
], with (18)

A3 = c

(3)
t

{1}
�[1]t

{2}
�[2]t

{3}
�[3]

+c

(2)(n� c)(t{1,2}
�[12] t

{3}
�[3] + t

{1,3}
�[13] t

{2}
�[2] + t

{2,3}
�[23] t

{1}
�[1])

+c(n� c)(n� 2c)t
�

(19)
B3 = A3 with t ! t� e

⇠

, n ! n� 1 (20)

Proof: Follows the same steps as the proof of Theorem 3, but
now starting from Lemma 3.

C. Score for s = 4

Lemma 4: Let ↵,�, �, " be symbols in some alphabet. Let m
and t be the colluder tally and all-user tally respectively for
this alphabet. Then
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+c(n� c)[(n� 2c)(n� 3c) + (n� c)]�
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Proof: Follows from (4) after diligent labour.
Theorem 5: For s = 4 the Neyman-Pearson score (9) in the
case of the Interleaving attack has the form (14), with

⇤
nc

({{1}, {2}, {3}, {4}}) = c

(4)

⇤
nc

({{12}, {3}, {4}}) = c

(3)(n� c)

⇤
nc

({{12}, {34}}) = c

(2)(n� c)(2)

⇤
nc

({{123}, {4}}) = c

(2)(n� c)(n� 2c+ 1)

⇤
nc

({{1234}}) = c(n� c)[(n� 2c)(n� 3c) + (n� c)]. (22)

The other ⇤-parameters are obtained by permuting the set [s].
Proof: Follows the same steps as the proof of Theorem 3, but
now starting from Lemma 4.


