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Introduction

I Most speech processing systems rely on deep architecture to classify speech
frames into subword units (HMM triphone states).

I Requires pronunciation dictionary for breaking words into subwords; in many
cases still make frame-level independence assumptions.

I Some studies have started to reconsider whole words as basic modelling unit
[Heigold et al., 2012; Chen et al., 2015].
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Segmental automatic speech recognition

Segmental conditional random field
ASR [Maas et al., 2012]:

Word-level Vector Regression

Andrew, f1=0 ran, f1=1 

Figure 2. Example word lattice for an utterance. The lat-
tice compactly represents possible segmentations of the ut-
terance along with their transcriptions. We predict a word
vector φ̂ for each segment (edge) and compute the distance
from to the actual word vector φ(w) for the segment. A bi-
nary feature f1 is then produced to indicate which edge in
an overlapping time span has minimum distance.

SCARF is trained on the lattices using a single feature
– a unigram language model. We chose the simple
language model and absence of other features to fo-
cus solely on the contribution of our novel word-level
acoustic model to system performance. Word error
rate (WER) is then evaluated on the RT-03 dataset
using the Sclite tool. The resulting WER is 20.1%
which is, as anticipated, high relative to the 15.6%
performance achieved when using the 1-best decoding
from Attila as a feature for SCARF.

4.2. Minimum Distance Feature

Our model predicts a word vector φ̂q for an acous-
tic segment q using only the acoustic information
v(q). When using SCARF, we also have a word la-
bel w(q). We then compute the Euclidean distance

d = ||φ̂q − φw(q)|| between the predicted word vector
and the word vector corresponding to the word seg-
ment label.

After computing distances for all segments in the lat-
tice, we convert them to a binary feature. At a par-
ticular point in time there is some confusion set C of
possible segments that overlap at that time point. In
figure 2 the segments ‘And’ and ‘Andrew’ form a con-
fusion set, and the segments ‘you’ and ‘Andrew’ form
a separate confusion set. Our final feature function is
given by,

f1(w(q), v(q)) =

{
1 minq∈C ||φ̂q − φw(q)||
0 otherwise

. (10)

So any segment that is the minimum distance predic-
tion for a confusion set in the lattice will have feature
f1 active. Figure 2 shows a valid setting of f1 based
on the confusion sets present in the lattice.

4.3. Results

We train SCARF using our minimum distance feature,
as well as the same unigram language model feature

Model Word Error Rate (%)

SCARF baseline 20.1
SCARF w/ Min Dist 19.8

Attila HMM 15.6

Table 3. Speech Recognition Performance. Adding our
minimum distance feature improves upon the baseline sys-
tem, but does not outperform using output of the highly
engineered Attila recognizer is as a feature.

described in section 4.1. Table 3 shows the resulting
WER for our model and the baseline, as well as the
performance possible in SCARF when including the
1-best hypothesis from the Attila system as a feature.

Our model achieves a 1.5% relative improvement over
the baseline system – a reasonable gain for this chal-
lenging LVCSR task. Such a relative improvement is
on the order of what is attained by adding yet another
training step or feature modification to HMM systems
like Attila, but our approach does not rely on domain-
specific knowledge. This demonstrates that using con-
volutional networks to reason over entire words can
benefit complete speech recognition systems.

5. Conclusion

We introduced a convolutional network architecture
that projects the acoustics of an entire word to a
word vector space. This general framework enables
the model to handle large vocabularies via regression
in place of parametric classification. We demonstrated
the architecture’s ability to accurately classify words
in a 10,000-way problem. Further, when integrated
into a large vocabulary speech recognizer, our model
provides improvement over a baseline system. This
demonstrates the potential for word-level deep learn-
ing approaches in the speech domain. Finally, the
convolutional vector regression framework has many
architecture parameters, and there are several types
of word vector space we can choose. This offers many
opportunities for future work in learning deep archi-
tectures to project word utterances into word vector
spaces. Such models have application not only for
speech recognition, but also dialog systems like voice
search, and exploring vector spaces to capture both
acoustic and semantic similarity.
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Whole-word lattice rescoring [Bengio
and Heigold, 2014]:

Figure 2: Deep architecture used to train word embeddings

a word and returns a real valued vector of the same size as the
word embeddings from the left column. The model is trained
using a so-called triplet ranking loss, similar to the one used
in [16], where we randomly select an acoustic sequence from
the training set, the word that we know it represents, and a ran-
domly selected other word (dubbed WrongWord in the figure),
and apply the following loss:

L = max(0,m− Sim(e, w+) + Sim(e, w−)) (6)

where m is a margin parameter to be selected (often set to 1),
e is the word embedding vector obtained at the layer below the
softmax of the Deep Convolution Network, w+ is the embed-
ding representation obtained at the end of the Deep Neural Net-
work for the correct word, while w− is the embedding repre-
sentation obtained similarly for the wrong word; Sim(x, y) is a
similarity function between two vectors x and y, such as the dot
product. Training the Deep Neural Network with this loss tends
to move the embedding representation of letter-n-gram near the
embedding representation of the corresponding acoustic vector.
In order to train such a model faster, we actually use the so-
called WARP loss [16], which weighs every triplet according to
the actual estimate of the rank of the correct word (w+), which
has been shown to improve performance when measuring rank-
ing losses such as precision-at-k.

Using such a trained model, one can then compute a score
between any acoustic sequence and any word, as long as one
can extract letter-n-gram features from it. Empirical evidence
that such an approach appears to be reasonable can be seen by
examining the nearest neighbors, in the underlying embedding
space, of the embeddings of some letter-n-gram. Table 1 shows
examples of such neighbors. It can be seen that, as expected,
neighbors of any given word arguably sound like it. In order to
show that it also works for new words, the last example shows
a target word (“chareety”) that does not exist, but its neighbors
still make sense.

Table 1: Nearest neighbor examples in the acoustically similar
embedding space.

Word Neighbors
heart hart, heart’s, iheart, hearth, hearted, art
please pleased, pleas, pleases, pleaser, plea
plug plugs, plugged, slug, pug, pluck
chareety charity, sharee, cheri, tyree, charice, charities

3. Experiments
We describe in this section an initial attempt at learning word
embeddings suitable for automatic speech recognition. We first
describe the dataset we used as well as the baseline model; then
we describe the model we used to predict words given acoustic
features; following this, we describe the model we used to be
able to generalize to words unknown at training time; finally,
we show word error rate results on a speech decoding task.

3.1. Dataset and Features

The training set consists of 1,900 hours of anonymized, hand-
transcribed US English voice search and dictation utterances.
Word Error Rate (WER) evaluations were carried out on a dis-
joint test set of similar utterances, amounting to 137,000 words.

3.2. Baseline Deep Neural Network

The input for the baseline network is 26 contiguous frames (20
on the left and 5 on the right to keep the latency low) of 40-
dimensional log-filterbank features [8]. The log-filterbanks are
computed every 10ms over a 25ms window. The network con-
sists of eight fully connected rectified linear unit layers (so-
called ReLUs) with 2560 nodes each, and a softmax layer on
top with the 14000 states as the output labels. Such an architec-
ture has been shown to reach state-of-the-art performance [6, 8].

3.3. Description of the Acoustic Deep Architecture

The training set contains a total of 48,310 unique words that
were seen at least 4 times each in the corpus. Using a previ-
ously trained model, we obtain a training set aligned at the word
level, which provides an estimate of where each word utterance
starts and ends. Using this information we computed statistics
of the length of words and found that more than 97% of word
utterances were shorter in duration than 2 seconds. We thus de-
cided to consider context windows of 200 frames of 10ms each.
When a word was longer, it was cut (equally on both ends)
while when a word was smaller, we filled the remaining ends
with zeros, which corresponds to the mean feature value. We
also considered filling the vector with the actual frames around
the word, but results were slightly worse, presumably because
the variability of the contexts around training set words was not
enough to encompass the particular examples of the test set.
The deep architecture used to predict a word given a sequence
of 200 acoustic frames stacks the following layers:

1. a convolution layer of 64 units over blocks of 10 frames
by 9 features;

2. a ReLU;

3. a max pooling layer of 4 by 4, with a stride of 2 by 2;

4. a mean subtraction layer over blocks of 3 by 3;

5. a convolution layer of 64 units over blocks of 10 frames
by 4 features;

6. a ReLU;

7. a max pooling layer of 4 by 4, with a stride of 2 by 2;

8. a mean subtraction layer over blocks of 3 by 3;

9. two fully connected layers of 1,024 units using ReLUs;

10. a softmax layer over all 48,310 words of the training dic-
tionary.

The model was trained on 90% of the training set, for about
5 days on a single machine, using stochastic gradient descent
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Segmental query-by-example search
From [Levin et al., 2015]:

LapEig

NN Index

Search audio segments Segment embeddings

Query result(s)Query embeddingQuery audio

LapEig

Fig. 1. Diagram of the S-RAILS audio search system.

2. Each VAD region is split into overlapping segments from
some minimum duration to some maximum duration. Each
segment is mapped to a fixed-dimensional vector using tech-
niques from [14].

3. An index is constructed for randomized approximate nearest-
neighbor retrieval [16] on the collection of fixed-dimensional
embeddings. Each segment created in the previous step ap-
pears as an entry in the index.

4. At query time, a query segment is mapped to its fixed-
dimensional representation and the near-neighbors of that
representation are retrieved from the index.

5. Candidate matches to a query can be rescored after retrieval,
e.g., by computing exact DTW scores as in [13].

2.1. Fixed-dimensional Segment Embeddings

To obtain fixed-dimensional representations of speech segments, we
use the unsupervised Laplacian eigenmaps embedding described in
Section 2.4 of [14], which we summarize here. Laplacian eigenmaps
is a non-linear dimensionality reduction technique that maps a col-
lection of objects into Euclidean space in such a way that the local
geometry of the collection is preserved. The Laplacian eigenmaps
framework is described in detail in [17], with an out-of-sample ex-
tension described in [18].

Let X be the set of all arbitrary-length feature vector time se-
ries, X = {X = x1x2, . . . , xT : T ∈ Z+}, where each xi ∈ Rp
and p is the dimensionality of a speech frame. Our goal is to find
a mapping h : X → Rd, where d is the dimensionality of our em-
beddings, such that speech segments from X with similar content
are mapped to nearby locations in Rd. We are given a collection
Y = {X1, X2, . . . , Xn} ⊂ X from which to learn this mapping.

We construct a k-nearest neighbor graph with nodes correspond-
ing to elements from Y , measuring the distances between segments
by their DTW alignment costs. The graph is represented by a binary-
valued adjacency matrix A ∈ Rn×n, with Aij = 1 if and only
if Xi is among the k nearest neighbors of Xj or vice versa. This
allows us to construct the normalized graph Laplacian of A, L =
I − D−1/2AD−1/2, where D is a diagonal matrix with Dii =∑
j Aij . The Laplacian eigenmaps out-of-sample extension, pre-

sented in [18], finds a set of projection maps {h1, h2, . . . , hd}, with
hj : X → R for j = 1, 2, . . . , d, which are determined by the
solutions to

h∗ = arg min
h∈HK ,

hTh=1,

hT~1=0

hTLh+ ξ‖h‖2K , (1)

where K : X × X → R is a positive semi-definite kernel function,
HK is the reproducing kernel Hilbert space for K, h is the vector
with hi = h(Xi), and ξ ≥ 0 is a regularization parameter. Our j-th
projection map applied to segment X ∈ X is then given by

h∗j (X) =
n∑

i=1

α
(j)
i K(Xi, X), (2)

where the α(j)
i terms are the solutions to the generalized eigenvector

problem (LK + ξI)α = λKα, where Kij = K(Xi, Xj). As
in [14], we use a kernel function given by

K(Xi, Xj) = exp

{−max{0,DTW(Xi, Xj)− η}
2σ2

}
,

where DTW(Xi, Xj) denotes the DTW alignment cost of segment
Xi with segment Xj , and η, σ ∈ R with σ > 0. We measure dis-
tance between embeddings using cosine distance, since [14] shows
this to yield good results on a word discrimination task.

2.2. Near-neighbor retrieval

A crucial step in both RAILS and S-RAILS consists of retrieving a
set of embeddings that are similar to a query embedding. Our goal is
to build an index which, given a query vector, returns vectors from
the index that are near to the query vector under cosine distance. To
solve this problem, RAILS used an implementation of point location
in equal balls (PLEB) as presented in [16]. PLEB makes use of
locality sensitive hash (LSH) functions, which capture the geometric
proximity of pairs of items in the sense that nearby items are likely
to be hashed to the same value and distant items are unlikely to be
hashed to the same value.

The LSH variant used here is the same as that used in the original
RAILS system [13]. We map vectors to binary strings of length S,
which we call signatures. This mapping is chosen such that cosine
distance between two vectors can be approximated by some function
of the Hamming distance between their respective signatures. These
signatures are generated by randomly choosing a set of S hyper-
planes through the origin in the vector space. Each bit of a vector’s
signature is determined by which side of a corresponding hyperplane
it falls on. Pairs of vectors with small cosine distance are unlikely to
be separated by a randomly-chosen hyperplane, and thus their sig-
natures are likely to be similar. This permits fast retrieval of the ap-
proximate near neighbors of a given query vector by computing its
signature and returning all vectors from the search collection whose
signatures are at a small Hamming distance from it.

The near-neighbor retrieval algorithm used in S-RAILS is dis-
cussed in detail in [19], and we summarize it here. We let B de-
note the beamwidth, a parameter that controls the number of near

[Chen et al., 2015]: Similar scheme for “Okay Google” using LSTMs.

In this work, we also use a query-related task for evaluation.
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Acoustic word embedding problem

xi ∈ Rd in d-dimensional space

f(Y1)

f(Y2)

Y2

Y1
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Reference vector method [Levin et al., 2013]
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Word classification CNN [Bengio and Heigold, 2014]
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Supervision and side information

I The word classifier CNN assumes a corpus of labelled word segments.

I In some cases these might not be available.

I Weaker form of supervision we sometimes have (e.g. [Thiollière et al., 2015])
are known word pairs: Strain = {(m, n) : (Ym, Yn) are of the same type}

I Also aligns with query / word discrimination task: does two speech segments
contain instances of the same word? (Don’t care about word identity.)

Can we use this weak supervision (sometimes called side information) to train an
acoustic word embedding function f ?
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Word similarity Siamese CNN

Use idea of Siamese networks [Bromley et al., 1993].

Y1

x1 = f(Y1)

Y2

x2 = f(Y2)

Y1

x1 = f(Y1)

Y2

x2 = f(Y2)

distancel(x1,x2)
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Loss functions

The coscos2 loss [Synnaeve et al., 2014]:

lcos cos2(x1, x2) =
{

1−cos(x1,x2)
2 if same

cos2(x1, x2) if different

same

different

Margin-based hinge loss [Mikolov, 2013]:

lcos hinge = max {0, m + dcos(x1, x2)− dcos(x1, x3)}

where dcos(x1, x2) = 1−cos(x1,x2)
2 is the cosine distance between x1 and x2, and

m is a margin parameter. Pair (x1, x2) are same, (x1, x3) are different.
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Embedding evaluation: the same-different task
Proposed in [Carlin et al., 2011] and also used in [Levin et al., 2013].
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Experimental setup

I Speech from Switchboard is used for evaluation.

I Training set: 10k word tokens; sampled 100k training word pairs.

I Test set for same-different evaluation: 11k word tokens, 60.7M pairs, 3%
produced by same speaker.

I Used a comparable development set.
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Network architectures: Siamese CNN
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Results

Representation Dim AP

D
TW

MFCCs with CMVN 39 0.214
Correspondence autoencoder [Kamper et al., 2015] 100 0.469

Ac
ou

st
ic

wo
rd

em
be

d. Reference vector approach [Levin et al., 2013] 50 0.365

Word classifier CNN 1061 0.532± 0.014
50 0.474± 0.012

Siamese CNN, lcos cos2 loss 1024 0.342± 0.026
Siamese CNN, lcos hinge loss 1024 0.549± 0.011

50 0.504± 0.011
LDA on: lcos hinge, d = 1024 100 0.545± 0.011
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Varying dimensionalities on development data
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Summary and conclusion

I Introduced the Siamese CNN for obtaining acoustic word embeddings, and
evaluated different cost functions.

I Evaluated using word discrimination task, and showed similar performance to
word classifier CNN.

I For smaller dimensionalities: Siamese CNN outperformed classifier CNN.

I Self-criticism: evaluated on a small dataset (low-resource setting).

I Future work: sequence models, using embeddings for search and ASR.

17 / 17



Code

Neural networks (Theano): https://github.com/kamperh/couscous

Complete recipe: https://github.com/kamperh/recipe_swbd_wordembeds

https://github.com/kamperh/couscous
https://github.com/kamperh/recipe_swbd_wordembeds

