Deep convolutional acoustic word embeddings using word-pair side information

Herman Kamper¹, Weiran Wang², Karen Livescu²

 $^1 \rm CSTR$ and ILCC, School of Informatics, University of Edinburgh, UK $^2 \rm Toyota$ Technological Institute at Chicago, USA

ICASSP 2016

Introduction

- Most speech processing systems rely on deep architecture to classify speech frames into subword units (HMM triphone states).
- Requires pronunciation dictionary for breaking words into subwords; in many cases still make frame-level independence assumptions.
- Some studies have started to reconsider whole words as basic modelling unit [Heigold *et al.*, 2012; Chen *et al.*, 2015].

Segmental automatic speech recognition

Segmental conditional random field ASR [Maas *et al.*, 2012]:

Whole-word lattice rescoring [Bengio and Heigold, 2014]:

Segmental query-by-example search

From [Levin et al., 2015]:

Fig. 1. Diagram of the S-RAILS audio search system.

[Chen et al., 2015]: Similar scheme for "Okay Google" using LSTMs.

Segmental query-by-example search

From [Levin et al., 2015]:

Fig. 1. Diagram of the S-RAILS audio search system.

[Chen et al., 2015]: Similar scheme for "Okay Google" using LSTMs.

In this work, we also use a query-related task for evaluation.

Acoustic word embedding problem

Reference set \mathcal{Y}_{ref} :

 \mathbf{Y}_i

 \mathbf{Y}_{i}

7 / 17

7 / 17

7 / 17

Supervision and side information

- ► The word classifier CNN assumes a corpus of labelled word segments.
- ▶ In some cases these might not be available.
- ▶ Weaker form of supervision we sometimes have (e.g. [Thiollière *et al.*, 2015]) are known word pairs: S_{train} = {(m, n) : (Y_m, Y_n) are of the same type}
- Also aligns with query / word discrimination task: does two speech segments contain instances of the same word? (Don't care about word identity.)

Supervision and side information

- ► The word classifier CNN assumes a corpus of labelled word segments.
- ▶ In some cases these might not be available.
- ▶ Weaker form of supervision we sometimes have (e.g. [Thiollière *et al.*, 2015]) are known word pairs: S_{train} = {(m, n) : (Y_m, Y_n) are of the same type}
- Also aligns with query / word discrimination task: does two speech segments contain instances of the same word? (Don't care about word identity.)

Can we use this weak supervision (sometimes called side information) to train an acoustic word embedding function f?

Word similarity Siamese CNN

Use idea of Siamese networks [Bromley et al., 1993].

Word similarity Siamese CNN

Use idea of Siamese networks [Bromley et al., 1993].

Word similarity Siamese CNN

Use idea of Siamese networks [Bromley et al., 1993].

Loss functions
Loss functions

The coscos² loss [Synnaeve et al., 2014]:

Loss functions

The coscos² loss [Synnaeve et al., 2014]:

Margin-based hinge loss [Mikolov, 2013]:

$$l_{\cos \text{ hinge}} = \max \left\{ 0, m + d_{\cos}(\mathbf{x}_1, \mathbf{x}_2) - d_{\cos}(\mathbf{x}_1, \mathbf{x}_3) \right\}$$

where $d_{\cos}(\mathbf{x}_1, \mathbf{x}_2) = \frac{1 - \cos(\mathbf{x}_1, \mathbf{x}_2)}{2}$ is the cosine distance between \mathbf{x}_1 and \mathbf{x}_2 , and m is a margin parameter. Pair $(\mathbf{x}_1, \mathbf{x}_2)$ are same, $(\mathbf{x}_1, \mathbf{x}_3)$ are different.

Proposed in [Carlin et al., 2011] and also used in [Levin et al., 2013].

"apple"

Experimental setup

- Speech from Switchboard is used for evaluation.
- ► Training set: 10k word tokens; sampled 100k training word pairs.
- Test set for same-different evaluation: 11k word tokens, 60.7M pairs, 3% produced by same speaker.
- Used a comparable development set.

Network architectures: Word classifier CNN

Network architectures: Word classifier CNN

Network architectures: Word classifier CNN

Network architectures: Siamese CNN

Network architectures: Siamese CNN

	р:		
Representation	Dim	AP	

	Representation	Dim	AP
DTW	MFCCs with CMVN	39	0.214

	Representation	Dim	AP	
\geq	MFCCs with CMVN	39	0.214	
D	Correspondence autoencoder [Kamper <i>et al.</i> , 2015]	100	0.469	

	Representation	Dim	AP
\geq	MFCCs with CMVN	39	0.214
5	Correspondence autoencoder [Kamper <i>et al.</i> , 2015]	100	0.469
stic word embed.	Reference vector approach [Levin et al., 2013]	50	0.365
Acou			

	Representation	Dim	AP
DTW	MFCCs with CMVN Correspondence autoencoder [Kamper <i>et al.</i> , 2015]	39 100	$0.214 \\ 0.469$
.ра	Reference vector approach [Levin <i>et al.</i> , 2013]	50	0.365
Acoustic word emb	Word classifier CNN	1061	0.532 ± 0.014

	Representation	Dim	AP
DTW	MFCCs with CMVN	39	0.214
	Correspondence autoencoder [Kamper et al., 2015]	100	0.469
Acoustic word embed.	Reference vector approach [Levin <i>et al.</i> , 2013]	50	0.365
	Word classifier CNN	1061	0.532 ± 0.014
		50	0.474 ± 0.012

	Representation	Dim	AP
DTW	MFCCs with CMVN	39	0.214
	Correspondence autoencoder [Kamper et al., 2015]	100	0.469
Acoustic word embed.	Reference vector approach [Levin <i>et al.</i> , 2013]	50	0.365
	Word classifier CNN	1061	0.532 ± 0.014
		50	0.474 ± 0.012
	Siamese CNN, $l_{\cos \cos^2}$ loss	1024	0.342 ± 0.026
	Siamese CNN, $l_{\rm cos\ hinge}$ loss	1024	0.549 ± 0.011

	Representation	Dim	AP
DTW	MFCCs with CMVN	39	0.214
	Correspondence autoencoder [Kamper et al., 2015]	100	0.469
Acoustic word embed.	Reference vector approach [Levin <i>et al.</i> , 2013]	50	0.365
	Word classifier CNN	1061	0.532 ± 0.014
		50	0.474 ± 0.012
	Siamese CNN, $l_{\cos \cos^2}$ loss	1024	0.342 ± 0.026
	Siamese CNN, $l_{cos\ hinge}$ loss	1024	$\textbf{0.549} \pm 0.011$
		50	0.504 ± 0.011

	Representation	Dim	AP
M	MFCCs with CMVN	39	0.214
DT	Correspondence autoencoder [Kamper et al., 2015]	100	0.469
ed.	Reference vector approach [Levin <i>et al.</i> , 2013]	50	0.365
Acoustic word emb	Word classifier CNN	1061	0.532 ± 0.014
		50	0.474 ± 0.012
	Siamese CNN, $l_{\cos \cos^2}$ loss	1024	0.342 ± 0.026
	Siamese CNN, $l_{cos\ hinge}$ loss	1024	$\textbf{0.549} \pm 0.011$
		50	0.504 ± 0.011
4	LDA on: $l_{\rm cos\ hinge}$, $d=1024$	100	0.545 ± 0.011
Varying dimensionalities on development data

Varying dimensionalities on development data

Summary and conclusion

- Introduced the Siamese CNN for obtaining acoustic word embeddings, and evaluated different cost functions.
- Evaluated using word discrimination task, and showed similar performance to word classifier CNN.
- ► For smaller dimensionalities: Siamese CNN outperformed classifier CNN.
- Self-criticism: evaluated on a small dataset (low-resource setting).
- ► Future work: sequence models, using embeddings for search and ASR.

Code

Neural networks (Theano): https://github.com/kamperh/couscous

Complete recipe: https://github.com/kamperh/recipe_swbd_wordembeds

