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Motivation

■ Landmines are self-contained explosive 
devices that detonate when triggered by 
a person or vehicle

■ Factors that can trigger landmines

– Pressure

– Movement

– Sound

– Vibration

– Passage of time

– Signals

■ Types of landmines

– Anti-tank

– Anti-personnel

■ Different shapes, casings and materials



Motivation

■ Currently more than 50-70 million 
uncleared landmines in at least 
70 countries

■ It will take about 1,100 years to 
remove all landmines at the 
current clearance rate

■ Over 26,000 people are killed or 
maimed every year by landmines

■ Over 1,000,000 casualties 
reported since 1980 [1]

■ Half of all casualties in the Iraq 
and Afghanistan wars were 
attributed to land mines and 
improvised explosive devices 
(IEDs) [2]

[1]  U.S. Department of State, ”Hidden Killers: The Global Landmine Crisis”, US Department of State Publication

[2]  C. Wilson, ”Improvised explosive devices (IEDs) in Iraq and Afghanistan: effects and countermeasures”. CRS Report for Congress, 2007.



Landmines Detection Techniques

■ Metal Detector

– Based on disturbances from time-varying magnetic field

– Most popular but risky and limited to metallic detection

■ Acoustic/Seismic methods

– Based on vibration of materials subjected to sound waves

– Unaffected by moisture and weather but limited by depth of penetration and interference

■ Biological Methods

– Use of trained dogs, rats, pigs, birds and bees

– Training required, false alarms common, distraction inevitable

■ Mechanical Methods

– Includes prodding and use of mine clearing machines

– Efficient but risky and costly

■ Electromagnetic Methods

– Use of microwaves, infrared, X-ray , GPR etc

– Microwaves produce ambiguous results, infrared-based algorithms are not well developed, X-
ray results are poor, GPR  is promising



Introduction to GPR 

■ Electromagnetic pulses are directed at the physical 

scene-of-interest  (SOI)

■ Backscatter occurs when the transmitted pulse 

encounters dielectric constant changes within an 

SOI

■ Backscattered echoes capture the information  

needed to map the SOI onto the reconstructed 

imaging space

■ Buried targets are expected to have higher dielectric 

constant values than surrounding material, such as 

soil and rocks 

■ GPR data are echoes recorded by receivers for each 

transmitted pulse

Transmitter Receiver
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Existing Methods for UWB-GPR Reconstruction

■ Delay-and-Sum (DAS)

– Fast and straightforward implementation

– Produces images with poor resolution and large side lobes

■ Recursive Sidelobe Minimization (RSM)

– Reconstructs images with reduced clutter and has been applied 

in other SAR applications

– Does not incorporate the a priori information that SOI is sparse

■ Least Absolute Selection and Shrinkage Operator (LASSO)

– No straightforward way to choose parameter

■ Sparsity Learning Iterative Method (SLIM)

– Involves matrix inversion that may be too computationally 

intensive for real applications



Motivation for a Parameter-Free Algorithm

■ Determining a suitable choice for the parameter of the prior 

probability density function is not straightforward

■ Cross-validation is an off-line procedure that is  time-

consuming and sacrifices measurement for validation

■ L-curve is an off-line procedure that is   computationally 

expensive for large-size large scale estimation problems



Overall Methodology

■ Use the  MAP method to incorporate the a priori knowledge 

that the SOI contains few scatterers

■ Use “integrate-out” approach to obtain a hyper-parameter-free 

prior probability density function 

■ Solve  the resulting MAP objective functions using the  

majorize-minimize optimization technique

■ Jointly estimate  noise power



GPR Linear  Model 



GPR Linear Model (Cont.)

■ Model: 

y= 𝑨𝒙 +𝒘

■ Vector 𝒚 contains sampled GPR data for 𝐼 transmit positions and 𝐽
receivers.

■ Vector 𝒙 contains 𝐿 unknown reflection coefficients 

■ System matrix 𝑨 is 𝐼𝐽𝑁 × 𝐿

■ Problem Statement: Given 𝐲 and 𝑨, estimate 𝒙



Maximum A Posteriori Estimation

■ MAP estimate:

 𝑥𝑀𝐴𝑃 = 𝑎𝑟𝑔max
𝒙

𝑓𝑿|𝒀 𝒙 𝒚

■ Assumptions:

– Noise is WGN with variance 𝜎2

– Reflection coefficients are independent and identically distributed

 𝑥𝑀𝐴𝑃=𝑎𝑟𝑔min
𝒙

1

2σ²
𝒚 − 𝑨𝒙 2

2+
𝐾

2
logσ2 − log 𝑓𝐗 𝑥

■ Prior density function is Laplacian distribution

𝑓 𝑎; 𝜆 ≜
𝜆

2
exp(−𝜆 𝑎 )



Maximum A Posteriori Estimation (Cont.)
■ Integrate-out approach places a noninformative hyperprior over a parameter [3] to give a 

hyperparameter-free probability density function

𝑓𝑿 𝒙 =  
0

∞

𝑓𝑿|𝚲(𝒙|λ) 𝑓𝚲(𝜆)𝑑𝜆

■ Conditional probability density function is the Laplacian distribution

𝑓𝑋|Λ(𝑥|𝜆) =
𝜆

2
e−𝜆 𝑥𝑙

■ Hyperprior is the Jeffreys’ prior for the Laplacian distribution

𝑓Λ 𝜆 ≜ 𝐼 𝜆
1

2 (in terms of Fisher’s information)

𝐼 𝜆 = −𝐸𝜆
𝜕2 log 𝑓𝑿|Λ(𝒙|λ)

𝜕𝜆2
=

1

𝜆2

𝑓Λ 𝜆 =
1

𝜆
( 𝜆 > 0)

[3] G.C. Cawley, N.L. Talbot, and M. Girolami, ”Sparse multinomial logistic regression via bayesian L1 regularization ,``Bioinformatics, 
10, pp. 209-216, 2007. 



Maximum A Posteriori Estimation (Cont.)

𝑓𝑿 𝒙 =  
0

∞

𝑓𝑿|𝚲(𝒙|λ) 𝑓𝚲(𝜆)𝑑𝜆 =  
0

∞

 

𝑙=1

𝐿
𝜆

2
⋅ 𝑒−𝜆|𝑥𝑙| ⋅

1

𝜆
𝑑𝜆

■ Simplifying and using the gamma integral

𝑓𝑿 𝒙 =
1

2𝐿
⋅

Γ(𝐿)

 𝑙=1
𝐿 𝑥𝑙

𝐿

■ Resulting MAP objective function

𝜙 𝑥, 𝜎2 =
1

2 𝜎2
𝜙𝐿𝑆 𝒙 + +

𝐾

2
𝑙𝑜𝑔 𝜎2 + 𝐿 ⋅ 𝛾 𝒙

where

𝜙𝐿𝑆 𝒙 ≜ 𝒚 − 𝑨𝒙
2

2

𝛾 𝒙 ≜ 𝑙𝑜𝑔  

𝑙=1

𝐿

|𝑥𝑙|



Majorize-Minimize Optimization Technique

Illustration of  MM Concept



PFM Algorithm

Overview:

Suppose 𝑄 is a majorizing function for the MAP objective 

function, 𝜙, at the point 𝒙 𝑚 . Then,

𝒙 𝑚+1 ≜ 𝑎𝑟𝑔min
𝒙

𝑄 𝒙, 𝜎2 𝑚 ; 𝒙 𝑚

𝜎2 𝑚+1 ≜ 𝑎𝑟𝑔 min
𝜎2>0

𝜙 (𝒙 𝑚+1 , 𝜎2)

=
1

𝐾
𝒚 − 𝑨𝒙 𝑚+1

2

2



PFM Algorithm (Cont.)

What is a suitable choice for 𝐐?  

■ For any 𝒙𝜖𝑅𝑛 and function ℎ(𝒙),

𝑙𝑜𝑔 ℎ 𝒙 ≤ 𝑙𝑜𝑔 ℎ 𝒙 𝑚 +
ℎ 𝒙

ℎ 𝒙 𝑚
− 1

𝛾 𝑥 = 𝑙𝑜𝑔  

𝑙=1

𝐿

|𝑥𝑙| ≤ 𝑙𝑜𝑔  

𝑙=1

𝐿

𝑥𝑙
𝑚

+
 𝑙=1
𝐿 𝑥𝑙

 𝑙=1
𝐿 𝑥𝑙

𝑚
− 1

■ Using De Leeuw and Lange’s [4] majorization function for |𝑎|

𝑞 𝒙; 𝒙 𝑚 = 𝑙𝑜𝑔  

𝑙=1

𝐿

𝑥𝑙
𝑚

+

 𝑙=1
𝐿

𝛾′ 𝑥𝑙
(𝑚)

2𝑥𝑙
𝑚 𝑥𝑙

2 − 𝑥𝑙
(𝑚)

+ 𝛾(𝑥𝑙
(𝑚)

)

 𝑙=1
𝐿 𝑥𝑙

𝑚
− 1

[4 ] J. de Leeuw and K. Lange, ”Sharp Quadratic Majorization in One Dimension” Computational Statistics and Data Analysis,  

vol. 53 no.1 pp 2478 February 2004.



PFM Algorithm (Cont.)

■ Majorizing function for 𝜙𝐿𝑆 𝒙

𝜙𝐿𝑆 𝒙 =  

𝑘=1

𝐾

𝑦𝑘
2 − 2  

𝑘=1

𝐾

𝑦𝑘 𝑨𝒙 𝑘 +  

𝑘=1

𝐾

𝑨𝒙 𝑚
𝑘

2

■ De Pierro [5] developed a majorizing function for   𝑨𝒙 𝑚
𝑘

2

𝑟𝑘 𝒙;𝒙 𝑚 = 

𝑙=1

𝐿

𝑐𝑘𝑙 𝑛𝑘𝐴𝑘𝑙𝑥𝑙 − 𝑛𝑘𝐴𝑘𝑙𝑥𝑙
𝑚

+ 𝑨𝒙 𝑚
𝑘

2

■ Therefore, 

𝑞𝐿𝑆 𝒙; 𝒙 𝑚 =  

𝑘=1

𝐾

𝑦𝑘
2 − 2  

𝑘=1

𝐾

𝑦𝑘 𝑨𝒙 𝑘 +  

𝑘=1

𝐾

𝑟𝑘 𝒙; 𝒙 𝑚

[5]  A.R De Pierro , " A modified expectaction Maximization algorithm for penalized likelihood estimation in emission 
tomography”, IEEE transactions, medical imagery, pp 132-137, 1995



PFM Algorithm (Cont.)

Majorizing function for 𝜙:

𝑄 𝒙; 𝒙 𝑚

=
1

2𝜎2
 

𝑘=1

𝐾

𝑦𝑘
2 − 2𝑦𝑘 𝑨𝒙 𝑘 + 

𝑙=1

𝐿

𝑐𝑘𝑙 𝑛𝑘𝐴𝑘𝑙𝑥𝑙 − 𝑛𝑘𝐴𝑘𝑙𝑥𝑙
𝑚

+ 𝑨𝒙 𝑚
𝑘

2

+
𝑘

2
log 𝜎2 + 𝐿 ⋅ 𝑙𝑜𝑔  

𝑙=1

𝐿

𝑥𝑙
𝑚

+ 𝐿 ⋅

 𝑙=1
𝐿

𝛾′ 𝑥𝑙
(𝑚)

2𝑥𝑙
𝑚 𝑥𝑙

2 − 𝑥𝑙
(𝑚)

+ 𝛾(𝑥𝑙
(𝑚)

)

 𝑙=1
𝐿 𝑥𝑙

𝑚
− 𝐿

■ Taking the derivative of the majorizing function 𝑄 with respect to 𝑥𝑙 and setting it to 

zero yields the desired update for the 𝑙𝑡ℎ reflectance coefficient



PFM Algorithm (Cont.)

■ Updates for reflection coefficients and noise power:

𝑥𝑙
𝑚+1

=
𝐷𝑙

𝑚
𝐺𝑙

𝑚
+ 𝑥𝑙

𝑚
𝐻𝑙

𝐷𝑙
𝑚

+ 𝐿 ⋅ 𝜎
2 𝑚

, 𝑙 = 1, 2,… , 𝐿

𝐻 𝑙 =  

𝑘=1

𝐾

𝑛𝑘𝐴𝑘𝑙
2 , 𝐺

𝑚
𝑙 =  

𝑘=1

𝐾

𝐴𝑘𝑙 𝑦𝑘 − 𝐴𝑥 𝑚
𝑘

𝐷𝑙
𝑚

= 𝑥𝑙
𝑚

 

𝑙=1

𝐿

𝑥𝑙
𝑚

𝝈
2 𝑚+1

=
1

𝐾
𝒚 − 𝑨𝒙 𝑚+1

2

2



PFM Algorithm in Practice 

■ 𝛾 𝒙 is defined as

𝛾 𝒙 ≜ 𝑙𝑜𝑔  

𝑙=1

𝐿

|𝑥𝑙| + 𝑐

■ C>0 insures the parameter-free MAP objective function has a minimizer

■ C is chosen such that

𝜙( 𝒙) < 𝜙(𝟎)

■ DAS image is used as initial estimate

■ Acceleration techniques for computing 𝐻 𝑙 and 𝐺
𝑚

𝑙 from previous work [6] are used  for 
a fast memory-efficient implementation.

[6] M. Ndoye and J.M.M. Anderson, “An MM-Based Algorithm for L1”-Regularized Least-Squares Estimation with an application to Ground Penetrating Radar Image 
Reconstruction”, IEEE Trans.  Image Process.



Simulation Results:  ARL SIRE System

• A monocycle UWB pulse (300 -3000 MHz)

• 2 transmit antennas

• 1 active transmit antenna per shot

• 16 receive antennas
ARL SIRE System 

Prototype 

Sparsely Distributed 

Scatterers 



Simulation Results:  Real Data

Image formed using LMM algorithm 

Image formed using DAS algorithm

Image formed using PFM algorithm 



Comparison Using Threshold Detector

ROC comparing DAS, RSM and PFM algorithms for 12 point-scatterers. 

SNR=20dB, I= 121, J=16

DAS  Image for 12 point-scatterers RSM  image  for 12 point-scatterers
True scene-of-interest with 12 point-

scatterers

Image formed using PFM algorithm for

12 point-scatterers



Conclusions

■ Developed Parameter-Free MAP algorithms have been 

successfully applied to synthetic and real data from the 

impulse-based ARL SIRE system

■ Algorithms produced images that  are sparse with 

suppressed background  noise while retaining known 

scatterers
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