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Motivation - Spatial Sampling

» Consider the problem of estimating a spatially varying field over a large
area (For eg. Temperature)
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Standard Approach

* The usual procedure is to estimate the number of degrees of freedom of
the field

» If there are ‘N’ degrees of freedom, ‘N’ samples are taken and the
corresponding system of equations is solved

Temperature distribution in London, August 2003

® - Sensors

Temperature Celsius

EEEN
T ]

MODIS 7.08.2003 21:30 1

Source: http://climatelondon.org.uk/



Localization of Sensors is Challenging

» Localization algorithms or GPS equipment required to estimate the
coordinates of the sensors is expensive — especially if the number of
sensors is large

» The location information obtained might be unreliable since sensor
positions are liable to perturbations in spatial sampling
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Benefits of Location Unaware Sensors

<— Data Processing Unit X - Location unaware
Sensor

» Reduced cost of sensor deployment

e Lower amount of data to be
transmitted

* * Masking of sensor locations
prevents the location from being
Area of detected even if the data is
Interest intercepted



Field Model

a(t)

» Consider the 1D version of the spatial sampling problem
» g(t) is a smooth bandlimited, periodic field (one period is shown)

* Assuming the period to be 1:
b

g(t) = alk]exp(j2rkt)

=—
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Distributed Sampling Setup

® -Sensors

N
a(t)

« Sensors are deployed at unknown locations T,,T,, ..., T, obtained
according to a random distribution

» The ordering of the locations is also unknown

» The goal is to estimate the field using the sample values and the
distribution on the sensor locations



Assumption on Sensor Deployment

A ® -Sensors
a(t)

» The problem where sensors are deployed according to a continuous
distribution is non-linear and hence difficult to solve

« We will address a simplified version of the problem where the sensors are
located at a random point on a discrete grid
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Sampling Model

b

o g(t) = kzr a[k] exp(j2mkt) A ® -Sensors
1 | g(v |
° S= Ey (Spacing Parameter) :
| |
¢ (2b+1) grid points: {0, s,,2s,,...2bs,) e ‘I ‘I / >
A 0 s 2bs\/ 1 t
 Consider any sensor deployed p(t)
at location T according to the Pl T
distribution p(t):
T=is, w.p. p; (1=0,1,...,2b) p b
« Sensor location, i.e. the index ‘I’ is
unknown and oversamplingisused , |
to overcome location unawareness | 5>

0 s ... 2bs, 1t



Performance Criterion

b

* g(t)= Y a[k]exp(j2rkt) A ® -Sensors
h=—"mh

g(t) |

* The field has 2b+1 degrees of :
freedom | |
| | /
{ - >

e Correct detection of the 2b+1 A 0 s 2bsb\/ 1t

field values, g(is,), corresponds o(t)
to correct estimation of the field ,

P2y

* We wish to detect the field D
correctly with a high probability

* Hence detectionerror |
probability is the performance 0 1
criterion to be minimized 0 s, C e . 2bs, 1t




Main Result

g(t) = > a[k|exp(j2nkt) A ® -Sensors
k=—0b
g(t)

|
Detection error probability :
depends on the distribution on | |
the sensor locations, p(t ' '
p(®) ° o /

« p(t) is assumed to be discrete p(t)
and asymmetric Pop

» The main result of our work is to
find the optimal such p(t) that
minimizes the detection error
probability of any field g(t)

Pof—-
1 >
0 s ... 2bs, 1t
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Field Detection Algorithm

® -Sensors
* The field detection algorithm A
has 2 steps g(t) :
|
| |
* Step 1: Clustering Samples | | /
e - >
.. ) A 0 Sb 2b5b\/ 1 t
* Step 2: Assigning Locations to (t)
Clusters O
Pan
* Additional assumption:
Po<P1<P2<...< Py
P
Pof—-
1 >

0 s ... 2bs, 1t



Clustering Samples

L T, o(T,)
2 | T, | o(T,)
_ Scattering Sampling
—>
Ty = IS, w.p. p; | 9(T) = g(isp) w.p. p;

: (0<i<2b; 1<k <n) . (0<i<2b;1<k<n) _
N T, 9(Ty)
Sensors Locations Samples
® ¢ ®© o o . O
9(Ty) 9(T2) 9(Ts) 9(T4) 9(Ts) 9(Th)

» All samples of equal value are put in the same cluster (‘Value’ of the
cluster = Value of any sample in the cluster)

 Since there are 2b+1 distinct sample values we form (2b+1) clusters



Clustering Samples

L T, o(T,)
2 | T, | o(T)
_ Scattering Sampling
é -
Ty = IS, w.p. p; | 9(T) = g(isp) w.p. p;
. (0<i<2b; 1<k <n) . (0<i<2b; 1<k<n) _
" T, 9(Ty)
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» All samples of equal value are put in the same cluster (‘Value’ of the
cluster = Value of any sample in the cluster)

 Since there are 2b+1 distinct sample values we form (2b+1) clusters



Assigning Locations to Clusters

‘Type’ of cluster = Number of elements in the cluster
Clusters are sorted according to type

‘Value’ of cluster with smallest ‘Type’ is assigned to g(0), next smallest to
g(s,), and so on till g(2bsy) (since py < p; < ...<py)

Consider the following illustration for the case where b=2 and so there are
2b+1=5 clusters:

.‘ . 0

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5




Assigning Locations to Clusters

‘Type’ of cluster = Number of elements in the cluster
Clusters are sorted according to type

‘Value’ of cluster with smallest ‘Type’ is assigned to g(0), next smallest to
g(s,), and so on till g(2bsy) (since py < p; < ...<py)

Consider the following illustration for the case where b=2 and so there are
2b+1=5 clusters:

9(0) g(s,)  9(2sy) 9(3s,) g(4sy)

Cluster 5 Cluster 4 Cluster 2 Cluster 1 Cluster 3




lllustrative Example

« Consider a field g(t) as shown below with b=1, s,=1/3 which is sampled

n=10 times _ -
A 1.80
g(t) ® - Sensors 0.14
1.80 0.14
106/l\ Samp|e5= 138 1 106 2
0.14 -—1—“ ; 0.14 2 1.80 3
R 4 > 1.80 3 0.14 5
. :
0 1/3 2/3 1.06
0.14
| 0.14 _

* Conclusion: g(0)=1.06, g(1/3)=1.80, g(2/3)=0.14
» Field is detected correctly



lllustrative Example

« Consider a field g(t) as shown below with b=1, s,=1/3 which is sampled

n=10 times _ -
A 1.06
g(t) ® - Sensors 0.14
1.80 0.14
106/l\ Samp|e5= 138 1 180 2
0.14 -—1—“ ; 0.14 2 1.06 3
R 4 > 1.80 3 0.14 5
. :
0 1/3 2/3 1.06
0.14
| 0.14 _

* Conclusion: g(0)=1.80, g(1/3)=1.06, g(2/3)=0.14
» Field is detected incorrectly



What if the field values at 2 sensor
locations are equal?

» All samples of the same value are grouped in the same cluster

« If field value is equal any 2 of the 2b+1 grid points then all the samples
from these points go into the same cluster and we will have less than
2b+1 clusters

- If we assume the signal value to be equal at grid points ‘0’ and ‘s’ to be
equal then : ,
Z alk|(exp(j2mk(0)) — exp(j2mk(sy))) =0
k=—b
« To satisfy this one of the Fourier series coefficients, a[k], is constrained to
a fixed value

 If Fourier Series coefficients of a natural signal are instances of
independent, continuous random variables then this occurs with
probability zero



Detection Error Probability

 Let N, be the ‘type’ of the cluster corresponding to g(is,) (i.e samples from
location is,) in a set of ‘n” samples

 Our field detection algorithm is based on the assumptionthat 0<N,<N,<...<
N,, because 0 < py < p; < ...<pyy

« Probability of detection error (P,) = P((0 < Ny < N; < ...< N,,)%)

e It can be shown from the union bound that:
M< P, < (2b+1)M
M = max( P(Ng=0), P(Ny> N,), P(N; > N,), ..., P(N,, 1 > N,))

 Itis known from Sanov’s Theorem (analogous to the Chernoff Bound) that
each term in M decays exponentially with an increase in ‘n’

« Thus the distribution p = (pg, P1, --- , Pop) that minimizes M, also minimizes P,



Deriving the Main Result

M =max( P(Ny=0), P(Ny>N;), P(N; > N,), ..., P(Ny, 1> Ny))

* P(Ng=0) =(1- py)"

« P(Ng>N,) 2'“D* (From Sanov’s Theorem)

vV N, 2h )
where D* = min Z n 082, » subject tc > _Ni=n and N1 < Ny

i=(

e The other terms in M can be calculated as a function of p in similar fashion

* Minimizing M with respect to p (equivalent to minimizing P, with respect to
p) gives the following distribution:
3(i +1)°

(b+1)(26+ 1)(4b+ 3)

p; = for0 <1< 2b

» This is the distribution that gives minimum detection error probability for our
field detection algorithm



Simulation Setup

 Field being estimated: g(t) = Z alk| exp(j2mkt) (b=4Iisassumed)
fe=—0

« a[k]’s are generated using a uniform random number generator (Table 1) with a[-
k] =(a[k])* for real valued fields (conjugate symmetry)
* Number of samples collected (‘n’) is increased from 100 to 20,000

« The empirical detection error probability for various distributions (Table 2) on the
sensor locations is simulated using 10,000 Monte-Carlo trials

Distribution Type =[Py i, ]

Random a,[U(1),U(2),...,U(2b+1)]*
a:l: 0.9134 - 10.5469 Linear a,[1,2,...,2b+1]
a[2] 0.1270 -0.2785 Cubic as[1,8,...,(2b+1)3]
a[3] 0.9058 - j0.0975 Optimal ay[1,4,...,2b+17]
al4] 0.8147 - j0.6324 *U(k)’s are ordered uniform random variables

Table 1 Table 2



Simulation Results

* We use a log-log plot since

the P, decays exponentially o 10°F E
with n and we are interested :;
in modeling the exponent = -
2 107
=,
« Each plot ends when the 'E \
empirical detection error v H
probability becomes zero or g 107 |
the maximum sample size o H
(n = 20000) is reached 3 — 1
_'E 107 —— cubic
« Itis observed that the = T lmear
estimated optimal .LE — “F’“mﬂll
distribution decays fastest 107 2 0 T we

and has the smallest
empirical detection error
probability

Number of samples



Extension to the 2D case

« Inthe 1 dimensional case the signal had 2b+1 degrees of freedom and
hence we sampled it at 2b+1 grid points

» Similarly in the 2D case, if the signal has ‘N’ degrees of freedom it is
sampled at ‘N’ grid points

» Sensors are deployed according to an asymmetric distribution and the
location on the grid where the sensor lands is unknown

Temperature fistributiorg in Londory, August 003
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Future Work

® -Noise
« Extending the setup to include A ® -Sensors
measurement noise on the g(t)
samples |
l
l l
: . : I |
» Requires application of clustering oo P / 5>
algorithms from machine learning 0 s, e 2bsb\/ 1t

(For eg. EM algorithm) on the noisy
samples



Future Work

® - Sensors

» Deploying sensors according to an arbitrary continuous distribution

» We are working on an algorithm to estimate the field in this case
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