

3rd IEEE Global Conference on Signal & Information Processing Orlando, Florida, USA December 14-16 2015

General Symposium: WbGS-L: Image Enhancement and Calibration Techniques – 1.

Fast Depth Estimation Using Non-iterative Local Optimization for Super Multi-view Images

T. Senoh, K. Wakunami, H. Sasaki, R. Oi and K. Yamamoto

Dec. 16, 2015

National Institute of Information and Communications Technology

Contents

Introduction

Depth estimation \Rightarrow super multi-view coding and free navigation Problem \Rightarrow depth estimation speed and quality

• Fast depth estimation algorithm

3-view matching

zig-zag scan

- ⇒ against occlusion
- Non-iterative depth optimization:

edge adaptation

- Depth continuity weight \Rightarrow against pseudo matching
 - ⇒ for speed and depth uniformity
 - ⇒ for depth reliability

Experimental results

CG image: 68-100 times fast / synthesized image gain = +0.3 to -0.3dB Camera image: 111 times fast / synthesized image loss = -0.7to -1.0dB

Conclusion

Super multi-view image coding

If depth maps are available, number of views can be reduced.

Free navigation

If depth maps are available, arbitrary views can be synthesized.

Depth estimation from multi-view image

- Depth is the distance between corresponding pixels (disparity).
- Corresponding pixels are searched by stereo matching.

Depth map by stereo matching only

Problem : Depth errors caused by pseudo matching.

■ Point : Depth at texture edge is correct. ⇒ Propagate correct depth value.

Graph-cuts smoothing

- Graph-cuts algorithm repeats cost evaluation until the cost converges.
- \Rightarrow slow, un-predictable estimation time.

New cost
$$C(d, P) = \underline{E(d, P)} + \underline{\lambda(|D(R) - d| + |D(B) - d|)}$$

Matching error Depth continuity
Old cost $C(D, P) = E(D, P) + \lambda(|D(R) - D(P)| + |D(B) - D(P)|)$
Criteria if $\sum_{P} C(d, P) < \sum_{P} C(D, P), \rightarrow$ replace D with d

Fast depth estimation proposal

• Accelerate graph-cuts algorithm by means of dynamic programming like.

3-view matching error aggregation

- By changing depth value *d* from minimum to maximum, at each pixel *P*,
- Record smaller left or right matching error (E_L or E_R). \Rightarrow against occlusion
- 3x3 pixel matching ⇒ against pseudo matching

Non-iterative cost evaluation

- Scan from depth layer 0 to layer N,
- In depth layer d, start from center line ⇒ get depth of important object.
- Zig-zag scan pixels. ⇒ Reduce depth over-propagation.
- Use adopted depth values at pixel *T* and *L* for the next pixel *P*.
- Evaluate *C*(*d*, *P*): Cost of current depth *d*

C(*D*,*P*): Cost of already determined depth *D*

If C(d, P) < C(D, P), adopt depth d for the pixel P temporally.

- When lower half lines are end, scan upper half lines.
- After one-layer scan, repeat scan in reverse direction. ⇒ smooth depth map.

Cost function

• Cost = matching error + weight × depth continuity

Horizontal weight Vertical weight Hysteresis weight

$$\underbrace{C(d,P)}_{P} = E(d,P) + \lambda_H | D(L) - d | + \lambda_V | D(T) - d | + \delta | D(P) - d | \\
\text{New cost Matching error Horizontal continuity Vertical continuity Hysteresis}$$

$$\underbrace{C(D,P)}_{Previous Matching error Horizontal continuity Vertical Continuity Vertical$$

Correct depth propagation

• Propagate depth value at large luminance change to other area.

⇒ Change depth continuity weight when edge exists.

Edge adaptation

- If luma difference between left pixel L and right pixel R, or top pixel T and bottom pixel B > threshold,
- \Rightarrow edge \Rightarrow Multiply reduction coefficient ρ to depth continuity weight λ .
- Not using center pixel \Rightarrow increases detection sensitivity for blurred edges.

$$if |I(L) - I(R)| > th \implies horizontal \ edge \implies \lambda_{H} = \lambda_{H} \times \rho$$
$$if |I(T) - I(B)| > th \implies vertical \ edge \implies \lambda_{V} = \lambda_{V} \times \rho$$

Depth level after falling edge

- If background is less textured, preventing foreground depth propagation is difficult.
- To ease such propagation, change the scan direction line by line.

Test image for experiment

CG image:

Shark

View99

View34

View49

View100

 (1920×1088)

 (1920×1088)

View10

View35

View50

View9

View36

 (1280×960)

 (1280×960)

Pantomime

Champagne

Tower

Fast depth estimation parameter

• Parameters are currently determined empirically.

Item	Shark	Bee	Champagne	Pantomime
Min Disparity Search Range	-7	-10	0	0
Max Disparity Search Range	5	3	28	15
Search Level	4	4	4	4
Smoothing Coef 1 (λ)	1.0	1.0	1.0	2.0
Smoothing Coef 2 (p)	0.1	0.1	0.1	0.1
Smoothing Coef 3 (δ)	0.02	0.02	0.01	0.04
δ in case luma <20	0.5	0.5	0.25	1.0
Threshold (th)	10	30	30	20

Shark estimated depth

Depth estimation speed of proposed is 68-times faster than of Graph-Cuts.

Shark: 1920 × 1088 pixels					
Prop	osed Gr	aph-cuts			
Continuity weight	λ=1.0	λ=1.0			
Edge weight	ρ=0.1	-			
Hysteresis weight	δ=0.02	-			
Edge threshold	th=10	-			

Synthesized Shark from the depth

- Center view was synthesized from estimated left and right depth maps.
- Average PSNR is +0.3dB better than Graph-cuts result.

Baseline length between left and right views: 2 views

BL = 7mm × 2 views = 14 mm

Bee estimated depth

• Depth estimation speed of proposed is 100 times faster than of Graph-Cuts.

Bee: 1920 × 1088 pixels					
P	roposed	Graph-cuts			
Continuity weigh	t λ=1.0	λ=1.0			
Edge weight	ρ=0.1	-			
Hysteresis weigh	t δ=0.02	2 -			
Edge threshold	th=30	-			

Synthesized Bee from the depth

• Average PSNR is about -0.3dB lower than Graph-cuts result.

Baseline length between left and right views: 2 views

BL = 3.7mm × 2 views = 7.4 mm

Champagne Tower estimated depth

• Depth estimation speed is about 110-times faster than Graph-Cuts.

Synthesized Champagne Tower

Average PSNR loss is about -0.7dB compared to Graph-cuts result.

Baseline length between left and right views: 2 views

BL = 50mm × 2 views = 100 mm

Pantomime estimated depth

• Depth estimation speed is about 116-times faster than Graph-Cuts.

23

Synthesized Pantomime

• Average PSNR loss is about -1.0 dB compared to Graph-cuts result.

Baseline length between left and right views : 2 views BL = 50mm × 2 views = 100 mm

Conclusion

- A fast and high-quality depth estimation algorithm was proposed.
- Proposed algorithm accelerated depth estimation speed by 68-116 times faster than a Graph-Cuts algorithm.
- Estimated depth map quality is +0.3 to -1.0dB higher or lower than Graph-Cuts algorithm for super multi-view image synthesis.
- Depth estimation time is determined by the image size and number of depth layers, which is useful for implementation.

