Full waveform microseismic inversion using differential evolution algorithm

Lijun Zhu, Entao Liu, and James McClellan

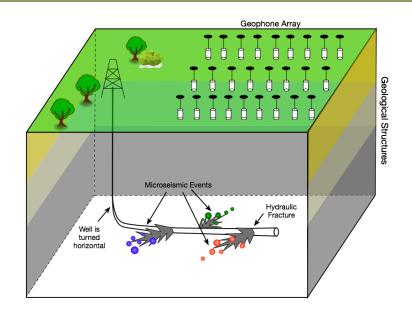
CeGP, Georgia Tech

December 11, 2015

- 1 Introduction
- 2 Algorithm
- 3 Synthetic Simulation
- 4 Conclusion

- 1 Introduction
- 2 Algorithm
- **Synthetic Simulation**
- 4 Conclusion

Surface monitoring during hydraulic fracturing



Summary

- Low oil price urges for cost-effective long-term monitoring
- Increasing interests on surface geophone array monitoring
 - Low cost comparing to wellbore array
 - Good azimuth angle coverage
 - Long term monitoring
- Microseismic events is a good indicator of subsurface structure changes
 - Event location
 - Source mechanism
- Processing pipeline
 - Pre-processing (QC and de-noise)
 - Event detection
 - Event localization
 - Finding source mechanism

Previous work on event localization

- Digitize the entire monitoring space into small blocks (grid nodes)
- Semblance [Gharti et al., 2010, Frantiek* et al., 2014]
 - Search all possible grid nodes using simple but fast method.
 - Rely on the coherent signal energy across the receiver array.
 - Low computation requirement, but might give misleading or imprecise results.
- Back-propagation [Gajewski and Tessmer, 2005, Haldorsen et al., 2012]
 - Reverse time and back propagate wave field in digitized grids based on wave equations.
 - Take advantage of full waveform information.
 - Effective but expensive (time and memory), especially for 3D elastic wave.
 - Sensitive to model error, can have poor focusing.
- Both methods were developed using single component data

Example of traditional methods

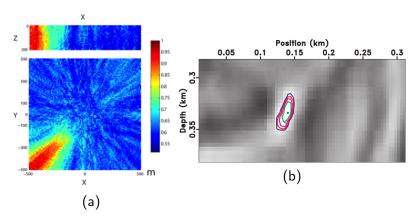
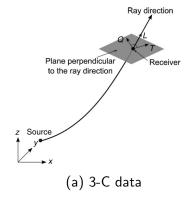


Figure 1: Event localization from (a)semblance based method and (b) reverse-time based method.

3-component data and source mechanism

- 3-component(3-C) data is becoming popular
- Source mechanism is also important in reservoir monitoring
- Identify the source mechanism along with the localization becomes possible



	D		B
Moment tensor	Beachball	Moment tensor	Beachball
$\frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$		$-\frac{1}{\sqrt{3}}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
$-\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	lacktriangle	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	
$\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$		$\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$	
$\frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$		$\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
$\frac{1}{\sqrt{6}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$		$\frac{1}{\sqrt{6}} \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
$\frac{1}{\sqrt{6}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$	0	$-\frac{1}{\sqrt{6}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$	

(b) Moment tensor

- Introduction
- 2 Algorithm
- **Synthetic Simulation**
- 4 Conclusion

Problem setup

Assumptions

- Event origin time is given by event detection
- Source waveform is available through wavelet estimation
- Only AWGN is considered after pre-processing
- Isotropic lossless layered velocity model
- Forward modelling of 3-C data
 - For complicated model, Finite-difference is used to compute Green's function
 - For layered velocity model, Green's function for p-wave and s-wave can be obtained by Generalized Ray Theory
 [Ben-Menahem and Singh, 2012]
 - Separate moment tensor and wave propagation due to isotropy of the media

Problem setup (cont.)

- Physical model
 - For i^{th} source and receiver pair, a Green's function g[i] satisfies

$$\mathbf{u}[i] = g[i] * w \times \mathbf{m}$$

where $\mathbf{u}[i]$ is the data received, w is the source wavelet and \mathbf{m} is the moment tensor.

■ Denote the convolution by $G[i] \triangleq g[i] * w$. Stack G[i] into a big matrix **G** and data matrix u[i] into **u**, we have

$$\mathbf{u} = \mathbf{Gm} \tag{1}$$

where both \mathbf{G} and \mathbf{m} are unknown.

■ For a set of receiver locations, fixed velocity model and source wavelet, *G* is only a function of source location s, thus

$$\mathbf{u} = \mathbf{G}(\mathbf{s})\mathbf{m} \tag{2}$$

Minimization problem

Original problem

$$\underset{s,m}{\mathsf{Minimize}} \ \|\mathbf{u} - \mathbf{G}(\mathbf{s})\mathbf{m}\|$$

For a fixed **s**, **m** can be estimated by least squares

$$\hat{\mathbf{m}}(\mathbf{s}) = (\mathbf{G}^H(\mathbf{s})\mathbf{G}(\mathbf{s}))^{-1}\mathbf{G}^H(\mathbf{s})\mathbf{u}$$
 (3)

New problem

$$\underset{s}{\mathsf{Minimize}} \ \mathbf{J}(\mathbf{s}) \triangleq \|\mathbf{u} - \mathbf{G}(\mathbf{s})\hat{\mathbf{m}}(\mathbf{s})\| \tag{4}$$

■ In most cases, J(s) is a highly non-linear, non-convex function of s.

Search for the minimum

- Grid search
 - Small model, coarse grid
 - Green's function of every source-receiver pair is evaluated
 - Minimum is guaranteed
- Differential Evolution algorithm (DE)
 - A smart way to sample the parameter space by population
 - Mutation is introduced for each generation(iteration) based on the current population
 - Selected mutants are compared with current population, the better one goes into the next generation
 - Requires fewer evaluations of forward modelling (computation of Green's function)

Differential evolution

- Initialization: randomly select an initial population of D agents consisting a set of parameters
- Mutation \mathbf{v}_p :

$$\mathbf{v}_{p} = \mathbf{x}_{p1} + F(\mathbf{x}_{p2} - \mathbf{x}_{3}) \tag{5}$$

where $F \in [0, 2]$, \mathbf{x}_{p1} to \mathbf{x}_{p3} are distinct and randomly selected from current population.

Crossover:

$$u_j = \begin{cases} v_j & \text{if } p_j \le C \text{ or } j = RI \\ x_j & \text{otherwise} \end{cases}$$
 (6)

where $p_j \sim U(0,1)$, $C \in [0,1]$, and random index(RI) is among $\{1, \dots, D\}$.

Selection: Choose between u_i and x_i and keep the one with lower cost function $\mathbf{J}(\mathbf{s})$.

- 1 Introduction
- 2 Algorithm
- 3 Synthetic Simulation
- 4 Conclusion

Simulation setup

■ 15×15 surface geophone array, double-couple moment sensor shown below:

$$MT = \begin{bmatrix} 0.4330 & -0.2500 & 0.7500 \\ -0.2500 & -0.4330 & 0.4330 \\ 0.7500 & 0.4330 & 0.0000 \end{bmatrix}$$
 (7)

Use PSNR as the measurement of noise level:

$$PSNR = 20 \log_{10} \frac{D_{\text{max}}}{\sigma}$$
 (8)

where D_{max} is the maximum magnitude of a trace and σ is the standard deviation of AWGN.

■ The model size is of $30 \times 30 \times 15$ grid points with 40m spatial resolution

Simulation setup

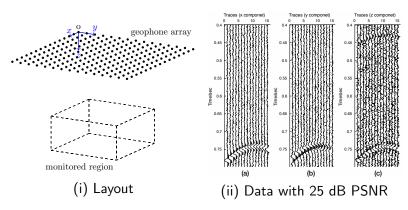
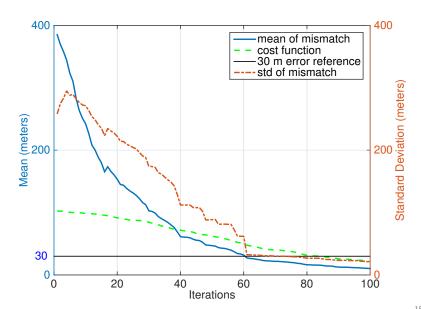


Figure 2 : Simulation setup: (i)array geometry and (ii)sample data with 25dB PSNR: (a)x, (b)y, (c)z components.

Details about DE algorithm

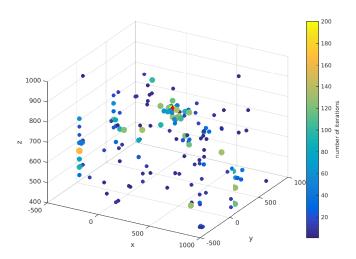
- Off-grid point
 - Move to the nearest grid node
 - Green's function of each node will only be evaluated once in the simulation
- Population size
 - Rule of thumb: population size is 5 to 10 times the dimension of parameter space
 - In our example, the dimension of parameter space is three (x, y, z): population size is 30
- Accuracy measurement
 - The spatial resolution is 40m, the half diagonal distance is about 30m $(20\sqrt{2})$
 - 60m error will be acceptable, 30m error will be a good estimation
- Terminal condition
 - DE program can be restart at any iteration as long as the population is saved
 - Gradually increase the number of iteration until the cost function is stable

Convergence rate by iteration



Population convergence as iteration increases

- Population converges slower than the estimated error
- Dot color and size indicate number of iterations



Simulation results

- Accuracy
 - acceptable accuracy (60m error) within 40 iteration
 - good accuracy (30m error) within 60 iteration
- Robustness
 - Reach good accuracy in 100 iteration down to 0 dB PSNR
 - Event detection will break before the localization algorithm
- Computation requirement
 - Grid search: $30 \times 30 \times 15 \times 225 = 3,037,500$ evaluation of Green's function
 - DE algorithm(C = 0.5): $15 + 0.5 \times 30 \times 60 \times 225 = 205,875$ evaluation of Green's function
 - DE evaluates only 6.7% of all the grid nodes

- 1 Introduction
- 2 Algorithm
- **Synthetic Simulation**
- 4 Conclusion

Conclusion

- The proposed method integrates **moment tensor inversion** and **event localization**
- **Reduce the dimension** of parameter space from 9 to 3 using proposed scheme
- Synthetic simulation illustrates a good accuracy of proposed method within reasonable number of iterations
- Differential evolution method evaluates significantly fewer
 Green's functions than grid search method

References

Frantiek*, S., J. Valenta, D. Anikiev, and L. Eisner, 2014, Semblance for microseismic event detection: SEG Technical Program Expanded Abstracts 2014, 2178–2182.

Gajewski, D., and E. Tessmer, 2005, Reverse modmodel for seismic event characterization: Geophysical Journal International, **163**, 276–284.

Gharti, H. N., V. Oye, M. Roth, and D. Khn, 2010, Automated microearthquake location using envelope stacking and robust global optimization: GEOPHYSICS, **75**, MA27–MA46.

Haldorsen, J., M. Milenkovic, N. Brooks, C. Crowell, and M. Farmani, 2012, Locating microseismic events using migration-based deconvolution: SEG Technical Program Expanded Abstracts 2012, 1–5.

Questions?

■ Thanks for your attention!

 This work is supported by the Center for Energy and Geo Processing (CeGP) at Georgia Tech and by King Fahd University of Petroleum and Minerals (KFUPM).