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Outline of the Presentation

 Motivation

 Proposed work on joint estimation of HRF and 
activity signal

 Validation of the proposed method

- on synthetic data

- on real fMRI data

 Conclusion
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Prior work for estimating activity signal

-----(2)

 Only unknown in equ.1 is intrinsic stimuli

i i i i  y s h ξ ……(1)

fixed canonical HRF

HRF shape may vary across different brain 
regions as well as across patients.



Proposed Work

Aim: To propose a method for the joint estimation
of HRF and activity signal
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Proposed Joint Estimation Framework

1. Estimate underlying activity signal => via fused LASSO

2. Refine the HRF estimate

Iteratively



Step-1: Estimation of activity signal

i i i i  y s h ξ

i i i iy = H s +ξ ……(3)

BOLD signal Convolution matrix

Unknown activity signal

AR(1)
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noise whitening matrix

Fused LASSO

……(4)
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Step-2: Estimation of HRF
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BOLD signal Convolution matrix

Unknown HRF

AR(1)
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Step-2: Estimation of HRF

11

Fig. 1. (a):Theoretical shape of HRF;                (b) Scaling function of db4 

Assumptions on HRF:
1) Smooth over time;  2) Sparse in wavelet domain 

(with db4)
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Results on synthetic fMRI data
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with a1=6, a2=12, b1=b2=6, and c=0.35.

Synthetic HRF of length 32 is generated using the difference 
of two Gamma functions as below-

Synthetic stimulus of 200 time points is generated with 5 ON 
periods of duration 6s, 5s, 10sm 3s, and 1s with onsets at 
10s, 40s, 100s, 140s, and 180s, respectively. 

……(7)



Results on synthetic fMRI data

- Black solid line shows the 
actual HRF used in 
simulation set-up
- Box plot shows estimated 
HRF over 500 realizations 
of noise time-series

- Black solid line shows 
the actual stimulus used 
in simulation set-up
- Box plot shows 
estimated stimulus over 
500 realizations of noise 
time-series

0=0.001, 1=0.3, 2=1, 3

=0.7, 2=0.1
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Fig.3: ROC curve on the estimated activity signal for single voxel time series with 2=0.25.



Results on real fMRI data
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Real fMRI data --- a right hand finger tapping task in 3-T MR scanner

-- 36 contiguous slices with 128x128x36 voxels,     voxel size = 4x4x4 mm3

-- No. of brain volumes= 100, TR= 3s

-- Stimulus: 10 volumes of rest followed by 10 volumes of activity, and so on

-- Preprocessing: Using SPM12 -- include realignment (with the first scan for 
removal of motion artefact), slice time correction (with the first slice of each 
volume), and normalization (with the MNI atlas) 

-- Resultant fMRI data had 100 brain volumes of 79x95x68 voxels each

-- No smoothing is done in preprocessing 

-- First 12 dummy scans were discarded resulting in 88 brain volumes



Results on real fMRI data



Results on real fMRI data (Highest norm 
voxel)
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Research contribution 

 Joint iterative framework for the estimation of HRF
and the underlying activity signal

 Two stage optimization that estimates activity
signal and HRF iteratively

 Can be applied to both task-based and the Resting-
state data

 The proposed method is observed to perform
satisfactorily
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