

Robust Synthetic Basis Feature Descriptor

Lindsey Raven, D. J. Lee, and Alok Desai Electrical and Computer Engineering Brigham Young University Provo, Utah 84003

Feature Detection

Image Features:

- Individually distinguishable regions of an image that can easily be tracked between subsequent images
 - Corners, Blobs, or T-Sections Good Features
 - White Walls, Straight Lines Bad Features

ROBOT C N L A

BRIGHAM YOUNG UNIVERSITY

Feature Detection

- Usually image features can be detected and quantified using geometric or statistical properties of an image
- Common method for feature detection: Harris
 Corner Detection

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

$$\approx \sum_{(x,y)\in W} [I(x,y) + \begin{bmatrix} I_x & I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} - I(x,y)]^2$$

$$= \sum_{(x,y)\in W} \left(\begin{bmatrix} I_x & I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \right)^2$$

$$= \sum_{(x,y)\in W} [u \quad v] \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Feature Description

- Feature Descriptions:
 - Need to be accurate and unique
 - Compressed for embedded applications
 - Invariant to image deformations:
 - Lighting
 - Rotation
 - Scaling
 - Blurring
 - Perspective

Oxford Affine Image Dataset

Common Feature Description and Matching Algorithms

- SIFT: Scale Invariant Feature Transform
 - DoG (Difference of Guassians) to detect scale invariant features
 - Harris Corner and Maxima suppression to filter points
 - Generate a normalized orientation vector as a descriptor (rotation Invariant)
- SURF: Speeded Up Robust Features
 - Similar to SIFT but uses integral images and Gaussian pyramids to speed algorithm

Compressed Descriptor Algorithms

- SIFT + SURF costly in terms of space consumption
- Compressed Description Algorithms:
 - BRIEF (Binary Robust Independent Elementary Features)
 - BRISK (Binary Robust Invariant Scalable Key-points)
 - Both algorithms use random sampling to generate a compressed feature description
- Compressed sensing feature descriptor algorithms usually suffer in matching accuracy due to image variations

SYnthetic BAsis Feature Description Algorithm (SYBA)

Motivation

- •A compressed sensing theory reported recently seems to be a good approach for improving feature description performance.
- •Until now, no feature descriptor algorithm has used the compressed sensing theory.
- •The compressed sensing theory uses synthetic basis functions to encode and decode a signal efficiently and reduce the bandwidth and storage requirements.
- •An algorithm that is suitable for hardware implementation.

SYBA Algorithm

Compressed Sensing theory:

- Can accurately reconstruct a signal using minimal sampling
- Sampling can be dictated by synthetic basis functions
- SYBA: apply Synthetic Basis Images to accurately describe an image region: $= M = C \left(K \ln \frac{N}{2} \right)$ number of SBL images no

Battleship Game – Adaptive Strategy

- Count the number of hits in recursively subdividing halfplanes
- Drawback:
 - Next query depends on answer from previous guess (requires memory)

10

Battleship Game - Synthetic Basis Functions

- •Count number of ships showing through the mask.
- •Total number of ships (red squares) is 8
 - -Random Pattern A1 =>
 - -Random Pattern A2 => 5
 - -Random Pattern A3 =>

BRIGHAM YOUNG UNIVERSITY ROBOT C V I S I O N L A

11

Battleship Game - Synthetic Basis Functions

$$M = C\left(K \ln \frac{N}{K}\right)$$

where,

N represents the $n \times n$ square area

K is the number of black squares where the battleships might locate

M represents the maximum number of random patterns (guesses) required to locate all ships when K is equal to the rounded up integer of N/2.

Texas Tech University

SYBA Algorithm Flow

RIGHAM YOUNG UNIVERSITY

SYBA Algorithm: Generating a Descriptor Value

SYBA Algorithm: Feature Matching

Use L1 norm comparison to compare descriptor values

 $-d = \sum_{i=1,j=1}^{n} |x_i - y_j|$

- Descriptor similarity measure computation: 546664567...25000011 537664557...150010011 $\Sigma(011000010...10001000) = 5$
- Between two features: similarity measure must indicate features are mutually the best match for a feature match to be made

SYBA Algorithm

- Benefits of SYBA:
 - Compressed description
 - Simple operations
 - Accurate Feature matches
- Limitations of SYBA:
 - Feature match count and accuracy suffers under large image variations specifically for:
 - scale
 - orientation
 - perspective

Robust Synthetic Basis Descriptor Algorithm (rSYBA)

rSYBA Algorithm

- Goal: make the SYBA algorithm invariant to scale and rotation image variation
 - Generate binarized image regions that are normalized to image scaling and rotation
 - Maintain benefits of SYBA

rSYBA Algorithm Flow

ROBOT CLA

rSYBA Algorithm: Scale Invariance

 Generate multiple FRI's for the same feature at different scales

rSYBA Algorithm: Rotation Invariance

- Calculate the dominant gradient of the image region and rotate it
 - follow similar methodology to SIFT by using a gradient histogram

Results

Datasets

Oxford Affine Image Dataset

BYU Rotation and Scaling Dataset

Metrics

 Correct feature matches were determined using the Homography matrix:

• $p_2 = H * p_1$

 precision = The Total Number of Correct Feature Matches
 The Total Number of Matches Found

 recall = The Total Number of Correct Feature Matches
 The Total Number of Possible Matches

BYU Scale Dataset

BYU Rotation Dataset

Oxford Affine Dataset

Questions?