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Graph signal classification

> a signal is taking values on vertices of a graph

> can we use a neural network to classify such signals?



Off the shelf: fully connected layers

Hidden
Input
Output

> With only the vertices as input, fully connected layers can be used
» Fits most industrial use cases

> Drawback: the edges carry important information but they are not used



Leveraging the underlying structure: convolutions

kernel

On images, convolutions make use of the underlying grid graph structure
> locality
> weight sharing

» neighbor matching



First approach: Spectral definition

Convolutions are defined as pointwise multiplications in the spectral domain
L=D—-A=UAUT
XoWw=U"UXUW)

Examples:

» J. Bruna, et al, “Spectral networks and locally connected networks on
graphs,” arXiv preprint arXiv:1312.6203, 2013.

» M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

> M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” NIPS, 2016.

» R. Levie, et al, “Cayleynets: Graph convolutional neural networks with
complex rational spectral filters,” arXiv preprint:1705.07664, 2017.



First approach: Spectral definition

XoWw=UTUX.UW)
Pros

> Elegant and fast
Cons

> Work out of the shelf. Don't need to specify any weight sharing

» Spectral convolutions on grids do not match regular convolutions




Second approach: Using the vertex domain

Convolutions with a kernel are defined as a function of neighboring vertices.
Usually a dot product.
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Examples:

» J-C. Vialatte, V. Gripon, and G. Mercier, “Generalizing the convolution
operator to extend cnns to irregular domains,” arXiv preprint
arXiv:1606.01166, 2016.

» F. Monti, et al, “"Geometric deep learning on graphs and manifolds using
mixture model cnns,” arXiv preprint:1611.08402, 2016.

» B. Pasdeloup, et al. "Convolutional neural networks on irregular domains
through approximate translations on inferred graphs,” arXiv preprint
arXiv:1710.10035, 2017.

This is the approach used in the submitted paper



Second approach: Using the vertex domain
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Pros

> Vertex-domain convolutions on grids match regular convolutions

» Same results on images if the full underlying graph structure is known
Cons

> Wi ?

» How to define the weight sharing ?



Local receptive fields / Local receptive graph
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» graph of local receptive fields: local receptive graph

> the edges directly support the convolution




Usual case: learning one kernel

y = f(W-x+b)
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Proposition: learning two kernels

y=f(W-S5-x+b)

Learning W

> weight kernel

» W tensor of shape kernel_size x nb_input_channels x nb_feature_maps
Learning S

> weight sharing scheme kernel

» controls how the parameters of W will be shared across the graph

> S tensor of shape nb_input_vertices x nb_output_vertices x kernel_size

» S is masked by the adjacency matrix of the graph



Graphical explanation
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Genericity

Fully connected layer
» kernel_size = nb_input_vertices x nb_output_vertices

> S;; are all possible one-hot bit encoded vectors

Convolutional
» S one-hot bit encoded along third dimension

» S circulant along two first dimensions



Validation experiments on Image datasets

Restraining priors
1. about edge matching for weight sharing
2. about any underlying graph structure

Full priors

3. widen a convolutional layer by also learning S



Experiments on Mnist

> No prior about edge matching or any ordering of vertices

» Knowledge of the underlying grid structure

A : adjacency matrix
AF : connections with up to k-hop neighbors
S is masked with powers of A



Results

Convbxb Al A? A3
(0.87%) 1.24% (1.21%) | 1.02% (0.91%) | 0.93% (0.91%)
A4 AS AG AIO

0.90% (0.87%)

0.93% (0.80%)

1.00% (0.74%)

0.93% (0.84%)




Experiments on scramble Mnist

» No prior on underlying grid graph structure

» Usage of covariances between pixels

ERRERTERRD



Results

> Tresholded: we keep 3% of edges with biggest covariance

> k-NN: for each pixel we keep k = 25 neighbors with biggest covariance

MLP | Conv5x5 | Thresholded (p = 3%) | k-NN (k = 25)
1.44% | 1.39% 1.06% 0.96%




Forcing constraints ?

» Norm: normalizes S along third dimension

» Pos: only positive weights for S

2 ——
12 + Pos ———
None —&—
Norm + Pos
12 + Pos + Norm —e—

Test error rate




Experiment on Cifarl0

» Shallow networks widen by learning S

’ Support ‘ Learn S ‘ None Pos Norm Both
Convbxb No / / / 86.8£0.2
Convb5x5 Yes 874+0.1 | 87.1+0.2 | 87.1£0.2 | 87.2£0.3

Grid? Yes 87.3+0.2 | 87.3+0.1 | 87.5£0.1 | 87.4£0.1




Conclusion

> We propose to learn weights and how they are shared

v

The layer formulation is simple and generic

> It uses a graph representation of local receptive fields

v

It attains performances comparable with convolutional ones

Future work
» Graph inference for initializing S

» Reducing number of parameters (ex: sharing S between layers in deep
networks)

» Adding pooling
» Improving optimization
» Using S to define other operator-layers

» Semi-supervised and unsupervised
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