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Graph signal classification

I a signal is taking values on vertices of a graph

I can we use a neural network to classify such signals ?
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Off the shelf: fully connected layers

I With only the vertices as input, fully connected layers can be used

I Fits most industrial use cases

I Drawback: the edges carry important information but they are not used
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Leveraging the underlying structure: convolutions

On images, convolutions make use of the underlying grid graph structure

I locality

I weight sharing

I neighbor matching
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First approach: Spectral definition

Convolutions are defined as pointwise multiplications in the spectral domain

L = D −A = UΛUT

X ⊗W = UT (UX.UW )

Examples:

I J. Bruna, et al, “Spectral networks and locally connected networks on
graphs,” arXiv preprint arXiv:1312.6203, 2013.

I M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

I M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” NIPS, 2016.

I R. Levie, et al, “Cayleynets: Graph convolutional neural networks with
complex rational spectral filters,” arXiv preprint:1705.07664, 2017.
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First approach: Spectral definition

X ⊗W = UT (UX.UW )

Pros

I Elegant and fast

I Work out of the shelf. Don’t need to specify any weight sharing

Cons

I Spectral convolutions on grids do not match regular convolutions



7/21

Second approach: Using the vertex domain

Convolutions with a kernel are defined as a function of neighboring vertices.

Usually a dot product.

(X ⊗W )(vi) =
∑

j∈Nvi

wijX(vj)

Examples:

I J-C. Vialatte, V. Gripon, and G. Mercier, “Generalizing the convolution
operator to extend cnns to irregular domains,” arXiv preprint
arXiv:1606.01166, 2016.

I F. Monti, et al, “Geometric deep learning on graphs and manifolds using
mixture model cnns,” arXiv preprint:1611.08402, 2016.

I B. Pasdeloup, et al. “Convolutional neural networks on irregular domains
through approximate translations on inferred graphs,” arXiv preprint
arXiv:1710.10035, 2017.

This is the approach used in the submitted paper
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Second approach: Using the vertex domain

(X ⊗W )(vi) =
∑

j∈Nvi

wijX(vj)

Pros

I Vertex-domain convolutions on grids match regular convolutions

I Same results on images if the full underlying graph structure is known

Cons

I wij ?

I How to define the weight sharing ?
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Local receptive fields / Local receptive graph

I graph of local receptive fields: local receptive graph

I the edges directly support the convolution
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Usual case: learning one kernel
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Proposition: learning two kernels

Learning W

I weight kernel

I W tensor of shape kernel size x nb input channels x nb feature maps

Learning S

I weight sharing scheme kernel

I controls how the parameters of W will be shared across the graph

I S tensor of shape nb input vertices x nb output vertices x kernel size

I S is masked by the adjacency matrix of the graph
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Graphical explanation
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Genericity

Fully connected layer

I kernel size = nb input vertices x nb output vertices

I Sij are all possible one-hot bit encoded vectors

Convolutional

I S one-hot bit encoded along third dimension

I S circulant along two first dimensions
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Validation experiments on Image datasets

Restraining priors

1. about edge matching for weight sharing

2. about any underlying graph structure

Full priors

3. widen a convolutional layer by also learning S
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Experiments on Mnist

I No prior about edge matching or any ordering of vertices

I Knowledge of the underlying grid structure

A : adjacency matrix
Ak : connections with up to k-hop neighbors
S is masked with powers of A
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Results

Conv5x5 A1 A2 A3

(0.87%) 1.24% (1.21%) 1.02% (0.91%) 0.93% (0.91%)

A4 A5 A6 A10

0.90% (0.87%) 0.93% (0.80%) 1.00% (0.74%) 0.93% (0.84%)
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Experiments on scramble Mnist

I No prior on underlying grid graph structure

I Usage of covariances between pixels
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Results

I Tresholded: we keep 3% of edges with biggest covariance

I k-NN: for each pixel we keep k = 25 neighbors with biggest covariance

MLP Conv5x5 Thresholded (p = 3%) k-NN (k = 25)

1.44% 1.39% 1.06% 0.96%
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Forcing constraints ?

I Norm: normalizes S along third dimension

I Pos: only positive weights for S
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Experiment on Cifar10

I Shallow networks widen by learning S

Support Learn S None Pos Norm Both

Conv5x5 No / / / 86.8± 0.2

Conv5x5 Yes 87.4± 0.1 87.1± 0.2 87.1± 0.2 87.2± 0.3

Grid2 Yes 87.3± 0.2 87.3± 0.1 87.5± 0.1 87.4± 0.1
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Conclusion

I We propose to learn weights and how they are shared

I The layer formulation is simple and generic

I It uses a graph representation of local receptive fields

I It attains performances comparable with convolutional ones

Future work

I Graph inference for initializing S

I Reducing number of parameters (ex: sharing S between layers in deep
networks)

I Adding pooling

I Improving optimization

I Using S to define other operator-layers

I Semi-supervised and unsupervised
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