Representation learning using convolution neural network for acoustic-to-articulatory inversion

#### Aravind Illa, Prasanta Kumar Ghosh

#### SPIRE LAB, Electrical Engineering, Indian Institute of Science (IISc), Bangalore, India







イロン イヨン イヨン

ICASSP 2019,12 - 17 May. Brighton, UK.

Section 1



#### 1 Acoustic to Articulatory Inversion: Review

- 2 Proposed Approach
- 3 Dataset
- 4 Experiments and Results
- 5 Conclusion

3

イロン イヨン イモン イモン

## Speech Production





 Speech can be seen as the product of temporally overlapping gestures of articulators, each of which regulates the formation of constriction in vocal tract <sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Browman, C. P., and Goldstein, L. (1990).

<sup>&</sup>lt;sup>2</sup>Livescu et.al. (2016).

# Speech Production





 Speech can be seen as the product of temporally overlapping gestures of articulators, each of which regulates the formation of constriction in vocal tract <sup>1</sup>

Applications: ASR, Accent Conversion, Speaker Identification<sup>2</sup>

イロン イヨン イヨン イヨン

<sup>&</sup>lt;sup>1</sup>Browman, C. P., and Goldstein, L. (1990). <sup>2</sup>Livescu et.al. (2016).



Measurement Device: Electromagnetic articulography (EMA)

Э

イロン イ押入 イヨン イヨン



- Measurement Device: Electromagnetic articulography (EMA)
- Key articulators: lips, jaw, tongue and velum in the mid-sagittal plane.

Ξ

イロン イヨン イモン イモン

# Acoustic to Articulatory Inversion (AAI)



#### Acoustic to Articulatory Inversion

Estimating articulatory movements from speech acoustic features.

イロン 不良と 不良と



# Acoustic to Articulatory Inversion (AAI)



#### Acoustic to Articulatory Inversion

Estimating articulatory movements from speech acoustic features.

Inverse mapping function is known to be **non-linear** and **non-unique**.

イロン 不良と 不良と

## State-of-the-art model for AAI





#### Bidirectional LSTM

 RNNs are known to model the temporal dynamics by processing the sequence of input samples and maintaining a state information relative to history.

<ロ> (日) (日) (日) (日) (日)

## State-of-the-art model for AAI





#### Bidirectional LSTM

- RNNs are known to model the temporal dynamics by processing the sequence of input samples and maintaining a state information relative to history.
  - Preserves smoothing characteristics of articulatory trajectories

#### State-of-the-art model for AAI





#### Bidirectional LSTM

- RNNs are known to model the temporal dynamics by processing the sequence of input samples and maintaining a state information relative to history.
  - Preserves smoothing characteristics of articulatory trajectories
- Requires adequate amount of data from the target subject.

イロト イポト イヨト イヨト

#### Choice of acoustic feautres for AAI



#### Criterion: Maximize Mutual Information between acoustic and articulatory features.

 $^{3}\,\mathrm{Prasanta}$  Kumar Ghosh and Shrikanth Narayanan, (2010).

・ロト ・ 同 ト ・ ヨト ・ ヨト

## Choice of acoustic feautres for AAI



- Criterion: Maximize Mutual Information between acoustic and articulatory features.
- Mel frequency cepstral coefficients (MFCCs)<sup>3</sup> have been shown to be the best choice among the knowledge driven features (linear pre-diction coefficients (LPCs), cepstral representation of LPC (LPCC),and variants of LPC (line spectral frequency (LSF), reflection co-efficient (RC), log area ratio (LAR))

イロト イポト イヨト イヨト

<sup>&</sup>lt;sup>3</sup>Prasanta Kumar Ghosh and Shrikanth Narayanan, (2010).

## Choice of acoustic feautres for AAI



- Criterion: Maximize Mutual Information between acoustic and articulatory features.
- Mel frequency cepstral coefficients (MFCCs)<sup>3</sup> have been shown to be the best choice among the knowledge driven features (linear pre-diction coefficients (LPCs), cepstral representation of LPC (LPCC),and variants of LPC (line spectral frequency (LSF), reflection co-efficient (RC), log area ratio (LAR))
- Can we **learn** the representation of acoustic features directly from the raw waveform in a data driven manner?

イロト イポト イヨト イヨト

<sup>&</sup>lt;sup>3</sup>Prasanta Kumar Ghosh and Shrikanth Narayanan, (2010).

Section 2



#### Acoustic to Articulatory Inversion: Review

#### 2 Proposed Approach

3 Dataset

4 Experiments and Results

5 Conclusion

3

イロン イヨン イモン イモン





**I** To extract the features from the speech frames, we consider a 1D-CNN layer as first layer.





- **I** To extract the features from the speech frames, we consider a 1D-CNN layer as first layer.
- 2 We compute the output of the convolution filter by

$$\mathbf{Y}_n = \sigma(\log(|\mathbf{F} * \mathbf{x}_n + \mathbf{b}|)) \tag{1}$$

イロト イポト イヨト イヨト





- **I** To extract the features from the speech frames, we consider a 1D-CNN layer as first layer.
- 2 We compute the output of the convolution filter by

$$\mathbf{Y}_n = \sigma(\log(|\mathbf{F} * \mathbf{x}_n + \mathbf{b}|)) \tag{1}$$

We propose an end-to-end network for AAI by cascading a CNN layer to the state-of-the-art BLSTM network.





#### Goal of Investigation

Can we learn the representation of acoustic features directly from the raw waveform using 1-D CNN?

3

イロン 不同 とくほう 不良 と





#### Goal of Investigation

- Can we learn the representation of acoustic features directly from the raw waveform using 1-D CNN?
- 2 What kind of representations are learned by 1-D CNN?





#### Goal of Investigation

- Can we learn the representation of acoustic features directly from the raw waveform using 1-D CNN?
- 2 What kind of representations are learned by 1-D CNN?
- **3** Is the **performance** of learnt features from 1-D CNN are competitive with knowledge based features (MFCC)?

# Section 3



#### 1 Acoustic to Articulatory Inversion: Review

#### 2 Proposed Approach

#### 3 Dataset

4 Experiments and Results

#### 5 Conclusion

э

イロト イヨト イヨト イヨト

## Data Collection: EMA



- Electromagnetic articulography (EMA) AG501 was used to record the articulatory movement data.
  - It has 24 channels to measure the horizontal, vertical and lateral displacements and angular orientations of a maximum of 24 sensors.
  - 2 Available sampling rate: 250 Hz and 1250 Hz. <sup>4</sup>



## Data Collection



 Six sensors are connected to obtain twelve articulatory features denoted by UL<sub>x</sub>, UL<sub>z</sub>, LL<sub>x</sub>, LL<sub>z</sub>, Jaw<sub>x</sub>, Jaw<sub>z</sub>, TT<sub>x</sub>, TT<sub>z</sub>, TB<sub>x</sub>, TB<sub>z</sub>, TD<sub>x</sub>, TD<sub>z</sub>.



<sup>5</sup>A. Wrench, MOCHA-TIMIT, speech database, Department of Speech and Language Sciences, Queen Margaret University College,Edinburgh, 1999.

#### Data Collection



- Six sensors are connected to obtain twelve articulatory features denoted by UL<sub>x</sub>, UL<sub>z</sub>, LL<sub>x</sub>, LL<sub>z</sub>, Jaw<sub>x</sub>, Jaw<sub>z</sub>, TT<sub>x</sub>, TT<sub>z</sub>, TB<sub>x</sub>, TB<sub>z</sub>, TD<sub>x</sub>, TD<sub>z</sub>.
- 2 460 phonetically balanced English sentences <sup>5</sup>



<sup>5</sup>A. Wrench, MOCHA-TIMIT, speech database, Department of Speech and Language Sciences, Queen Margaret University College,Edinburgh, 1999.

#### Data Collection



- Six sensors are connected to obtain twelve articulatory features denoted by UL<sub>x</sub>, UL<sub>z</sub>, LL<sub>x</sub>, LL<sub>z</sub>, Jaw<sub>x</sub>, Jaw<sub>z</sub>, TT<sub>x</sub>, TT<sub>z</sub>, TB<sub>x</sub>, TB<sub>z</sub>, TD<sub>x</sub>, TD<sub>z</sub>.
- 2 460 phonetically balanced English sentences <sup>5</sup>
- **3** acoustic-articulatory data are recorded from 8 subjects (4 male and 4 female)
  - -Total: 3.19 hours
  - –Average duration/subject: 23.97 ( $\pm$  2.43) minutes.



<sup>5</sup>A. Wrench, MOCHA-TIMIT, speech database, Department of Speech and Language Sciences, Queen Margaret University College,Edinburgh, 1999.

Section 4



1 Acoustic to Articulatory Inversion: Review

2 Proposed Approach

3 Dataset

4 Experiments and Results

#### 5 Conclusion

3

《日》 《圖》 《臣》 《臣》



Total 460 sentences:

-368 for Train set (80%) -46 for validation (10%) and test (10%) sets.

イロト イヨト イヨト イヨト



Total 460 sentences:

 -368 for Train set (80%)
 -46 for validation (10%) and test (10%) sets.

 Proposed AAI model details:

 -1-D CNN as First layer followed by three BLSTM layers with 150 units
 -Linear regression layer at last.



- Total 460 sentences:

   -368 for Train set (80%)
   -46 for validation (10%) and test (10%) sets.

   Proposed AAI model details:

   -1-D CNN as First layer followed by three BLSTM layers with 150 units
   -Linear regression layer at last.

   Baseline AAI model details:

   -First three are BLSTM layers with 150 units
  - -Linear regression layer at last.

イロト イポト イヨト イヨト



| Total 460 sentences:                                |  |  |  |  |
|-----------------------------------------------------|--|--|--|--|
| -368 for Train set (80%)                            |  |  |  |  |
| -46 for validation $(10\%)$ and test $(10\%)$ sets. |  |  |  |  |
| Proposed AAI model details:                         |  |  |  |  |
| -1-D CNN as First layer followed by three BLSTM     |  |  |  |  |
| layers with 150 units                               |  |  |  |  |
| -Linear regression layer at last.                   |  |  |  |  |
| Baseline AAI model details:                         |  |  |  |  |
| -First three are BLSTM layers with 150 units        |  |  |  |  |
| -Linear regression layer at last.                   |  |  |  |  |
| Evaluation metrics:                                 |  |  |  |  |
| –Root Mean Square Error (RMSE)                      |  |  |  |  |
| -Correlation Coefficient (CC).                      |  |  |  |  |
|                                                     |  |  |  |  |

# SPIRE LAB

## **Experimental Conditions**

Analysis on pre-emphasis:
 –Without pre-emphasis
 –With pre-emphasis=0.97

## **Experimental Conditions**



Analysis on pre-emphasis:

-Without pre-emphasis

-With pre-emphasis=0.97

Data pooling for training:

-Independent training

-Joint training

-Adaptation.

## **Experimental Conditions**



- Analysis on pre-emphasis:
  - -Without pre-emphasis
  - -With pre-emphasis=0.97
- Data pooling for training:
  - -Independent training
  - -Joint training
  - -Adaptation.
- Comparison with Baseline approach:
  - -End-to-End AAI
  - -MFCC based BLSTM AAI .

## **Experimental Conditions**



- Analysis on pre-emphasis:
  - -Without pre-emphasis
  - --With pre-emphasis=0.97
- Data pooling for training:
  - -Independent training
  - -Joint training
  - -Adaptation
- Comparison with Baseline approach:
  - -End-to-End AAI
  - -MFCC based BLSTM AAI

# SPIRE LAB

# Analysis on pre-emphasis

#### Table: Performance of AAI with and without pre-emphasis.

|                      | $N_{cf}$ | $RMSE_{avg}$ | $CC_{avg}$ |
|----------------------|----------|--------------|------------|
| Without Pre-emphasis | 40       | 1.81         | 0.78       |
|                      | 100      | 1.82         | 0.78       |
|                      | 256      | 1.86         | 0.77       |
| Pre-emphasis=0.97    | 40       | 1.68         | 0.81       |
|                      | 100      | 1.66         | 0.81       |
|                      | 256      | 1.66         | 0.81       |

Э

イロン 不良さ 不良さ 不良さ



Figure: With (---) and without (---) pre-emphasis operation.

3

ヘロン 不良と 不良と 不良と

#### # Filters with center frequency $\leq$ 1000Hz



Figure: With (---) and without (---) pre-emphasis operation.

Ξ

イロン イヨン イヨン イヨン

## Joint training and adaptation



Table: Performance of AAI in terms of  $RMSE_{avg}$  (mm) with different training approaches.

| Training    | $N_{cf} = 40$ | $N_{cf} = 100$ | <i>N<sub>cf</sub></i> =256 |
|-------------|---------------|----------------|----------------------------|
| Independent | 1.68          | 1.66           | 1.66                       |
| Joint       | 1.56          | 1.63           | 1.60                       |
| Adaptation  | 1.47          | 1.50           | 1.49                       |

3



Figure: Magnitude response of learned filters after joint training

SPIRE LAB, IISc, Bangalore

# Comparison with MFCC





Figure: MFCC vs CNN features.

э

# Comparison with MFCC





Figure: Tongue Tip trajectories.

# Section 5



1 Acoustic to Articulatory Inversion: Review

- 2 Proposed Approach
- 3 Dataset
- 4 Experiments and Results
- 5 Conclusion

э

・ロト ・通ト ・注ト ・注ト





Experiments performed with 8 subjects revealed that the proposed CNN based approach performs on par with MFCC.

イロト イヨト イヨト イヨト



- Experiments performed with 8 subjects revealed that the proposed CNN based approach performs on par with MFCC.
- Pre-emphasis helps to boost the high frequency components, thereby higher formant regions and plays an important role in improving the performance of AAI.

<ロ> (日) (日) (日) (日)



- Experiments performed with 8 subjects revealed that the proposed CNN based approach performs on par with MFCC.
- Pre-emphasis helps to boost the high frequency components, thereby higher formant regions and plays an important role in improving the performance of AAI.
- Interestingly, the frequency response is band-pass in nature and center frequencies are found to be similar to those of mel-scale.



- Experiments performed with 8 subjects revealed that the proposed CNN based approach performs on par with MFCC.
- Pre-emphasis helps to boost the high frequency components, thereby higher formant regions and plays an important role in improving the performance of AAI.
- Interestingly, the frequency response is band-pass in nature and center frequencies are found to be similar to those of mel-scale.
- This could be due to the fact that the speech gestural information is maximally preserved when speech signal is processed by auditory filters such as mel-scale or bark-scale <sup>6</sup>.

<sup>&</sup>lt;sup>6</sup>Prasanta Kumar Ghosh, Louis M Goldstein, and Shrikanth Narayanan (2011). (ロト イヨト イヨト モート ヨー つへで

## Acknowledgment



- All the subjects for their participation in the EMA data collection.
- Nisha, Kaustubha for helping in recordings.
- Pratiksha Trust for their support.
- We thank IEEE Signal Processing Society and IEEE Bangalore section for supporting conference travel.

-Thanks!!

#### Thanks for your attention!

## References



| 1 | Browman, C. & Goldstein, L. (draft). Articulatory Phonology (1990)                                                                                                                                                                                                         |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Livescu, K., Rudzicz, F., Fosler-Lussier, E., Hasegawa-Johnson, M., & Bilmes, J. (2016). Speech Production in Speech Technologies: Introduction to the CSL Special Issue. Computer Speech & Language, 36, 165172.                                                          |
| 3 | Prasanta Kumar Ghosh and Shrikanth Narayanan, A generalized smoothness criterion for acoustic-to-articulatory inversion, The Journal of the Acoustical Society of America, vol. 128, no. 4, pp. 21622172, 2010.                                                            |
| 4 | EMA AG501: 3d electromagnetic articulograph, available http://www.articulograph.de/                                                                                                                                                                                        |
| 5 | A. Wrench, MOCHA-TIMIT, speech database, Department of Speech and Language Sciences, Queen Margaret<br>University College,Edinburgh, 1999                                                                                                                                  |
| 6 | Prasanta Kumar Ghosh, Louis M Goldstein, and Shrikanth S Narayanan, Processing speech signal using auditory-like filterbank provides least uncertainty about articulatory gestures, The Journal of the Acoustical Society of America, vol. 129, no. 6, pp. 40144022, 2011. |
| 7 | K. Richmond, Estimating articulatory parameters from the acoustic speech signal, Ph.D. dissertation, University of Edinburgh, 2002.                                                                                                                                        |
| 8 | Peng Liu, Quanjie Yu, Zhiyong Wu, Shiyin Kang, Helen Meng, L. C. (2015). A DEEP RECURRENT APPROACH FOR ACOUSTIC-TO-ARTICULATORY INVERSION (pp. 4450–4454).                                                                                                                 |
| 9 | Li, M., Kim, J., Lammert, A., Ghosh, P. K., Ramanarayanan, V., & Narayanan, S. (2016). Speaker verification based on<br>the fusion of speech acoustics and inverted articulatory signals. Computer Speech & Language, 36, 196211.                                          |

イロン イ御ン イヨン イヨン 三国